AUSTRALIA ONLY

Our goods come with guarantees that cannot be excluded under the Australian Consumer Law. You are entitled to a replacement or refund for a major failure and compensation for any other reasonably foreseeable loss or damage caused by our goods. You are also entitled to have the goods repaired or replaced if the goods fail to be of acceptable quality and the failure does not amount to a major failure. If you require assistance please call ASRock Tel : +886-2-28965588 ext.123 (Standard International call charges apply)

The terms HDMI® and HDMI High-Definition Multimedia Interface, and the HDMI logo are trademarks or registered trademarks of HDMI Licensing LLC in the United States and other countries.
Contents

Chapter 1 Introduction 1
1.1 Package Contents 1
1.2 Specifications 2
1.3 Motherboard Layout 7
1.4 I/O Panel 9

Chapter 2 Installation 11
2.1 Installing the CPU 12
2.2 Installing the CPU Fan and Heatsink 15
2.3 Installing Memory Modules (DIMM) 16
2.4 Expansion Slots (PCI Express Slots) 18
2.5 Jumpers Setup 19
2.6 Onboard Headers and Connectors 20
2.7 Post Status Checker 26
2.8 CrossFireX™ and Quad CrossFireX™ Operation Guide 27
2.8.1 Installing Two CrossFireX™-Ready Graphics Cards 27
2.8.2 Driver Installation and Setup 29
2.9 M.2 WiFi/BT Module and Intel® CNVi (Integrated WiFi/BT) Installation Guide 30
2.10 M.2_SSD (NGFF) Module Installation Guide (M2_1) 32
2.11 M.2_SSD (NGFF) Module Installation Guide (M2_2) 36

Chapter 3 Software and Utilities Operation 40
3.1 Installing Drivers 40
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2</td>
<td>A-Tuning</td>
<td>41</td>
</tr>
<tr>
<td>3.3</td>
<td>ASRock Live Update & APP Shop</td>
<td>44</td>
</tr>
<tr>
<td>3.3.1</td>
<td>UI Overview</td>
<td>44</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Apps</td>
<td>45</td>
</tr>
<tr>
<td>3.3.3</td>
<td>BIOS & Drivers</td>
<td>48</td>
</tr>
<tr>
<td>3.3.4</td>
<td>Setting</td>
<td>49</td>
</tr>
<tr>
<td>3.4</td>
<td>ASRock Polychrome RGB</td>
<td>50</td>
</tr>
<tr>
<td>Chapter 4</td>
<td>UEFI SETUP UTILITY</td>
<td>51</td>
</tr>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>53</td>
</tr>
<tr>
<td>4.2</td>
<td>EZ Mode</td>
<td>54</td>
</tr>
<tr>
<td>4.3</td>
<td>Advanced Mode</td>
<td>55</td>
</tr>
<tr>
<td>4.3.1</td>
<td>UEFI Menu Bar</td>
<td>55</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Navigation Keys</td>
<td>56</td>
</tr>
<tr>
<td>4.4</td>
<td>Main Screen</td>
<td>57</td>
</tr>
<tr>
<td>4.5</td>
<td>OC Tweaker Screen</td>
<td>58</td>
</tr>
<tr>
<td>4.6</td>
<td>Advanced Screen</td>
<td>70</td>
</tr>
<tr>
<td>4.6.1</td>
<td>CPU Configuration</td>
<td>71</td>
</tr>
<tr>
<td>4.6.2</td>
<td>Chipset Configuration</td>
<td>73</td>
</tr>
<tr>
<td>4.6.3</td>
<td>Storage Configuration</td>
<td>76</td>
</tr>
<tr>
<td>4.6.4</td>
<td>Intel® Thunderbolt</td>
<td>77</td>
</tr>
<tr>
<td>4.6.5</td>
<td>Super IO Configuration</td>
<td>79</td>
</tr>
<tr>
<td>4.6.6</td>
<td>ACPI Configuration</td>
<td>80</td>
</tr>
<tr>
<td>4.6.7</td>
<td>USB Configuration</td>
<td>82</td>
</tr>
<tr>
<td>4.6.8</td>
<td>Trusted Computing</td>
<td>83</td>
</tr>
</tbody>
</table>
4.7 Tools
4.8 Hardware Health Event Monitoring Screen
4.9 Security Screen
4.10 Boot Screen
4.11 Exit Screen
Chapter 1 Introduction

Thank you for purchasing ASRock Z390 Steel Legend motherboard, a reliable motherboard produced under ASRock’s consistently stringent quality control. It delivers excellent performance with robust design conforming to ASRock’s commitment to quality and endurance.

In this documentation, Chapter 1 and 2 contains the introduction of the motherboard and step-by-step installation guides. Chapter 3 contains the operation guide of the software and utilities. Chapter 4 contains the configuration guide of the BIOS setup.

1.1 Package Contents

- ASRock Z390 Steel Legend Motherboard (ATX Form Factor)
- ASRock Z390 Steel Legend Quick Installation Guide
- ASRock Z390 Steel Legend Support CD
- 2 x Serial ATA (SATA) Data Cables (Optional)
- 3 x Screws for M.2 Sockets (Optional)
- 2 x Standoffs for M.2 Sockets (Optional)
- 1 x I/O Panel Shield

Because the motherboard specifications and the BIOS software might be updated, the content of this documentation will be subject to change without notice. In case any modifications of this documentation occur, the updated version will be available on ASRock’s website without further notice. If you require technical support related to this motherboard, please visit our website for specific information about the model you are using. You may find the latest VGA cards and CPU support list on ASRock’s website as well. ASRock website http://www.asrock.com.
1.2 Specifications

Platform
- ATX Form Factor

CPU
- Supports 9th and 8th Gen Intel® Core™ Processors (Socket 1151)
- Digi Power design
- 8 Power Phase design
- Supports Intel® Turbo Boost 2.0 Technology
- Supports Intel® K-Series unlocked CPUs
- Supports ASRock BCLK Full-range Overclocking

Chipset
- Intel® Z390

Memory
- Dual Channel DDR4 Memory Technology
- 4 x DDR4 DIMM Slots
- Supports DDR4 4266+(OC)*/4133(OC)/4000(OC)/3866 (OC)/3800(OC)/3733(OC)/3600(OC)/3200(OC)/2933 (OC)/2800 (OC)/2666/2400/2133 non-ECC, un-buffered memory
 * Please refer to Memory Support List on ASRock’s website for more information. (http://www.asrock.com/)
- Supports ECC UDIMM memory modules (operate in non-ECC mode)
- Max. capacity of system memory: 128GB
- Supports Intel® Extreme Memory Profile (XMP) 2.0
- 15μ Gold Contact in DIMM Slots

Expansion Slot
- 2 x PCI Express 3.0 x16 Slots (PCIE1/PCIE4: single at x16 (PCIE1); dual at x16 (PCIE1) / x4 (PCIE4))
 * Supports NVMe SSD as boot disks
- 3 x PCI Express 3.0 x1 Slots (Flexible PCIe)
- Supports AMD Quad CrossFireX™ and CrossFireX™
- 1 x M.2 Socket (Key E), supports type 2230 WiFi/BT module and Intel® CNVi (Integrated WiFi/BT)
| **Graphics** | * Intel® UHD Graphics Built-in Visuals and the VGA outputs can be supported only with processors which are GPU integrated.
- Supports Intel® UHD Graphics Built-in Visuals: Intel® Quick Sync Video with AVC, MVC (S3D) and MPEG-2 Full HW Encode1,
- Intel® InTru™ 3D, Intel® Clear Video HD Technology, Intel® Insider™, Intel® UHD Graphics
- DirectX 12
- HWAEncode/Decode: AVC/H.264, HEVC/H.265 8-bit, HEVC/H.265 10-bit, VP8, VP9 8-bit, VP9 10-bit (Decode only), MPEG2, MJPEG, VC-1 (Decode only)
- Dual graphics output: Support HDMI and DisplayPort 1.2 ports by independent display controllers
- Supports HDMI 1.4 with max. resolution up to 4K x 2K (4096x2160) @ 30Hz
- Supports DisplayPort 1.2 with max. resolution up to 4K x 2K (4096x2304) @ 60Hz
- Supports Auto Lip Sync, Deep Color (12bpc), xvYCC and HBR (High Bit Rate Audio) with HDMI 1.4 Port (Compliant HDMI monitor is required)
- Supports HDCP 2.2 with HDMI 1.4 and DisplayPort 1.2 Ports
- Supports 4K Ultra HD (UHD) playback with HDMI 1.4 and DisplayPort 1.2 Ports |
| **Audio** | 7.1 CH HD Audio with Content Protection (Realtek ALC1200 Audio Codec)
- Premium Blu-ray Audio support
- Supports Surge Protection
- Nichicon Fine Gold Series Audio Caps
- 110dB SNR DAC with Differential Amplifier
- PCB Isolate Shielding
- Individual PCB Layers for R/L Audio Channel
- Gold Audio Jacks |
LAN
• Gigabit LAN 10/100/1000 Mb/s
• Giga PHY Intel® I219V
• Supports Wake-On-LAN
• Supports Lightning/ESD Protection
• Supports Energy Efficient Ethernet 802.3az
• Supports PXE

Rear Panel I/O
• 1 x Antenna Bracket
• 1 x PS/2 Mouse/Keyboard Port
• 1 x HDMI Port
• 1 x DisplayPort 1.2
• 1 x Optical SPDIF Out Port
• 2 x USB 2.0 Ports (Supports ESD Protection)
• 1 x USB 3.2 Gen2 Type-A Port (10 Gb/s) (ReDriver) (Supports ESD Protection)
• 1 x USB 3.2 Gen2 Type-C Port (10 Gb/s) (ReDriver) (Supports ESD Protection)
• 2 x USB 3.2 Gen1 Ports (Intel® Z390) (Supports ESD Protection)
• 1 x RJ-45 LAN Port with LED (ACT/LINK LED and SPEED LED)
• HD Audio Jacks: Rear Speaker / Central / Bass / Line in / Front Speaker / Microphone (Gold Audio Jacks)

Storage
• 6 x SATA3 6.0 Gb/s Connectors, support RAID (RAID 0, RAID 1, RAID 5, RAID 10, Intel Rapid Storage Technology 16), NCQ, AHCI and Hot Plug*
* If M2_1 is occupied by a SATA-type M.2 device, SATA3_1 will be disabled.
* If M2_2 is occupied by a SATA-type M.2 device, SATA3_5 will be disabled.
* If M2_1 is occupied by a PCIE-type M.2 device, SATA3_0 will be disabled.
• 1 x Ultra M.2 Socket (M2_1), supports M Key type 2230/2242/2260/2280 M.2 SATA3 6.0 Gb/s module and M.2 PCI Express module up to Gen3 x4 (32 Gb/s)**
• 1 x Ultra M.2 Socket (M2_2), supports M Key type 2230/2242/2260/2280 M.2 SATA3 6.0 Gb/s module and M.2 PCI Express module up to Gen3 x4 (32 Gb/s)**
** Supports Intel® Optane™ Technology
** Supports NVMe SSD as boot disks
** Supports ASRock U.2 Kit
Connector

- 1 x COM Port Header
- 1 x SPI TPM Header
- 1 x Power LED and Speaker Header
- 2 x RGB LED Headers
* Support in total up to 12V/3A, 36W LED Strip
- 1 x Addressable LED Header
* Supports in total up to 5V/3A, 15W LED Strip
- 1 x CPU Fan Connector (4-pin)
* The CPU Fan Connector supports the CPU fan of maximum 1A (12W) fan power.
- 1 x CPU/Water Pump Fan Connector (4-pin) (Smart Fan Speed Control)
* The CPU/Water Pump Fan supports the water cooler fan of maximum 2A (24W) fan power.
- 3 x Chassis/Water Pump Fan Connectors (4-pin) (Smart Fan Speed Control)
* The Chassis/Water Pump Fan supports the water cooler fan of maximum 2A (24W) fan power.
* CPU_FAN2/WP, CHA_FAN1/WP, CHA_FAN2/WP and CHA_FAN3/WP can auto detect if 3-pin or 4-pin fan is in use.
- 1 x 24 pin ATX Power Connector
- 1 x 8 pin 12V Power Connector
- 1 x Front Panel Audio Connector
- 1 x Thunderbolt AIC Connector (5-pin)
- 2 x USB 2.0 Headers (Support 3 USB 2.0 ports) (Supports ESD Protection)
- 2 x USB 3.2 Gen1 Headers (Support 4 USB 3.2 Gen1 ports) (Supports ESD Protection)

BIOS Feature

- AMI UEFI Legal BIOS with multilingual GUI support
- ACPI 6.0 Compliant wake up events
- SMBIOS 2.7 Support
- DRAM, PCH 1.0V, VCCIO, VCCST, VCCSA, VPPM Voltage Multi-adjustment
Hardware Monitor
- Temperature Sensing: CPU, CPU/Water Pump, Chassis/Water Pump Fans
- Fan Tachometer: CPU, CPU/Water Pump, Chassis/Water Pump Fans
- Quiet Fan (Auto adjust chassis fan speed by CPU temperature): CPU, CPU/Water Pump, Chassis/Water Pump Fans
- Fan Multi-Speed Control: CPU, CPU/Water Pump, Chassis/Water Pump Fans
- Voltage monitoring: +12V, +5V, +3.3V, CPU Vcore, DRAM, VPPM, PCH 1.0V, VCCSA, VCCST

OS
- Microsoft® Windows® 10 64-bit

Certifications
- FCC, CE
- ErP/EuP ready (ErP/EuP ready power supply is required)

* For detailed product information, please visit our website: http://www.asrock.com

Please realize that there is a certain risk involved with overclocking, including adjusting the setting in the BIOS, applying Untied Overclocking Technology, or using third-party overclocking tools. Overclocking may affect your system's stability, or even cause damage to the components and devices of your system. It should be done at your own risk and expense. We are not responsible for possible damage caused by overclocking.
1.3 Motherboard Layout
<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ATX 12V Power Connector (ATX12V1)</td>
</tr>
<tr>
<td>2</td>
<td>CPU Fan Connector (CPU_FAN1)</td>
</tr>
<tr>
<td>3</td>
<td>2 x 288-pin DDR4 DIMM Slots (DDR4_A1, DDR4_B1)</td>
</tr>
<tr>
<td>4</td>
<td>2 x 288-pin DDR4 DIMM Slots (DDR4_A2, DDR4_B2)</td>
</tr>
<tr>
<td>5</td>
<td>RGB LED Header (RGB_LED2)</td>
</tr>
<tr>
<td>6</td>
<td>ATX Power Connector (ATXPWR1)</td>
</tr>
<tr>
<td>7</td>
<td>USB 3.2 Gen1 Header (USB3_3_4)</td>
</tr>
<tr>
<td>8</td>
<td>SATA3 Connector (SATA3_2)</td>
</tr>
<tr>
<td>9</td>
<td>SATA3 Connector (SATA3_3)</td>
</tr>
<tr>
<td>10</td>
<td>SATA3 Connector (SATA3_1)</td>
</tr>
<tr>
<td>11</td>
<td>SATA3 Connector (SATA3_0)</td>
</tr>
<tr>
<td>12</td>
<td>SPI TPM Header (SPI_TPM_J1)</td>
</tr>
<tr>
<td>13</td>
<td>SATA3 Connector (SATA3_4)</td>
</tr>
<tr>
<td>14</td>
<td>SATA3 Connector (SATA3_5)</td>
</tr>
<tr>
<td>15</td>
<td>System Panel Header (PANEL1)</td>
</tr>
<tr>
<td>16</td>
<td>Power LED and Speaker Header (SPK_PLED1)</td>
</tr>
<tr>
<td>17</td>
<td>Chassis Fan / Waterpump Fan Connector (CHA_FAN3/WP)</td>
</tr>
<tr>
<td>18</td>
<td>Chassis Fan / Waterpump Fan Connector (CHA_FAN1/WP)</td>
</tr>
<tr>
<td>19</td>
<td>Clear CMOS Jumper (CLRMOS1)</td>
</tr>
<tr>
<td>20</td>
<td>USB 3.2 Gen1 Header (USB3_5_6)</td>
</tr>
<tr>
<td>21</td>
<td>USB 2.0 Header (USB5)</td>
</tr>
<tr>
<td>22</td>
<td>USB 2.0 Header (USB_3_4)</td>
</tr>
<tr>
<td>23</td>
<td>RGB LED Header (RGB_LED1)</td>
</tr>
<tr>
<td>24</td>
<td>Addressable LED Header (ADDR_LED1)</td>
</tr>
<tr>
<td>25</td>
<td>COM Port Header (COM1)</td>
</tr>
<tr>
<td>26</td>
<td>Front Panel Audio Header (HD_AUDIO1)</td>
</tr>
<tr>
<td>27</td>
<td>Thunderbolt AIC Header (TB1)</td>
</tr>
<tr>
<td>28</td>
<td>CPU Fan / Waterpump Fan Connector (CPU_FAN2/WP)</td>
</tr>
<tr>
<td>29</td>
<td>Chassis Fan / Waterpump Fan Connector (CHA_FAN2/WP)</td>
</tr>
</tbody>
</table>
1.4 I/O Panel

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PS/2 Mouse/Keyboard Port</td>
<td>9</td>
<td>Optical SPDIF Out Port</td>
</tr>
<tr>
<td>2</td>
<td>USB 3.2 Gen2 Type-A Port (USB31_TA_1)</td>
<td>10</td>
<td>USB 2.0 Ports (USB_1_2)</td>
</tr>
<tr>
<td>3</td>
<td>LAN RJ-45 Port*</td>
<td>11</td>
<td>USB 3.2 Gen2 Type-C Port (USB31_TC_1)</td>
</tr>
<tr>
<td>4</td>
<td>Central / Bass (Orange)</td>
<td>12</td>
<td>HDMI Port</td>
</tr>
<tr>
<td>5</td>
<td>Rear Speaker (Black)</td>
<td>13</td>
<td>DisplayPort 1.2</td>
</tr>
<tr>
<td>6</td>
<td>Line In (Light Blue)</td>
<td>14</td>
<td>USB 3.2 Gen1 Ports (USB3_1_2)</td>
</tr>
<tr>
<td>7</td>
<td>Front Speaker (Lime)**</td>
<td>15</td>
<td>Antenna Bracket</td>
</tr>
<tr>
<td>8</td>
<td>Microphone (Pink)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
- **Central / Bass (Orange)** includes audio output for central and bass channels.
- **Front Speaker (Lime)** is a non-standard color designation.
- **Line In (Light Blue)** is typically used for analog audio input.

Port marked with an asterisk () is dedicated for networking connection.*
Port marked with two asterisks () is a non-standard connection, typically for front panel audio output.*
If you use a 2-channel speaker, please connect the speaker’s plug into "Front Speaker Jack". See the table below for connection details in accordance with the type of speaker you use.

<table>
<thead>
<tr>
<th>Audio Output Channels</th>
<th>Front Speaker (No. 7)</th>
<th>Rear Speaker (No. 5)</th>
<th>Central / Bass (No. 4)</th>
<th>Line In (No. 6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>V</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>4</td>
<td>V</td>
<td>V</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>6</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>--</td>
</tr>
<tr>
<td>8</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
</tr>
</tbody>
</table>

* There are two LEDs on each LAN port. Please refer to the table below for the LAN port LED indications.

** If you use a 2-channel speaker, please connect the speaker’s plug into "Front Speaker Jack". See the table below for connection details in accordance with the type of speaker you use.
Chapter 2 Installation

This is an ATX form factor motherboard. Before you install the motherboard, study the configuration of your chassis to ensure that the motherboard fits into it.

Pre-installation Precautions

Take note of the following precautions before you install motherboard components or change any motherboard settings.

- Make sure to unplug the power cord before installing or removing the motherboard components. Failure to do so may cause physical injuries and damages to motherboard components.
- In order to avoid damage from static electricity to the motherboard’s components, NEVER place your motherboard directly on a carpet. Also remember to use a grounded wrist strap or touch a safety grounded object before you handle the components.
- Hold components by the edges and do not touch the ICs.
- Whenever you uninstall any components, place them on a grounded anti-static pad or in the bag that comes with the components.
- When placing screws to secure the motherboard to the chassis, please do not overtighten the screws! Doing so may damage the motherboard.
2.1 Installing the CPU

1. Before you insert the 1151-Pin CPU into the socket, please check if the PnP cap is on the socket, if the CPU surface is unclean, or if there are any bent pins in the socket. Do not force to insert the CPU into the socket if above situation is found. Otherwise, the CPU will be seriously damaged.

2. Unplug all power cables before installing the CPU.
Please save and replace the cover if the processor is removed. The cover must be placed if you wish to return the motherboard for after service.
2.2 Installing the CPU Fan and Heatsink

1. Attach the fan to the heatsink.
2. Connect the fan cable to the motherboard.
2.3 Installing Memory Modules (DIMM)

This motherboard provides four 288-pin DDR4 (Double Data Rate 4) DIMM slots, and supports Dual Channel Memory Technology.

1. For dual channel configuration, you always need to install identical (the same brand, speed, size and chip-type) DDR4 DIMM pairs.
2. It is unable to activate Dual Channel Memory Technology with only one or three memory module installed.
3. It is not allowed to install a DDR, DDR2 or DDR3 memory module into a DDR4 slot; otherwise, this motherboard and DIMM may be damaged.

Dual Channel Memory Configuration

<table>
<thead>
<tr>
<th>Priority</th>
<th>DDR4_A1</th>
<th>DDR4_A2</th>
<th>DDR4_B1</th>
<th>DDR4_B2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>Populated</td>
<td></td>
<td>Populated</td>
</tr>
<tr>
<td>2</td>
<td>Populated</td>
<td>Populated</td>
<td>Populated</td>
<td>Populated</td>
</tr>
</tbody>
</table>

The DIMM only fits in one correct orientation. It will cause permanent damage to the motherboard and the DIMM if you force the DIMM into the slot at incorrect orientation.
2.4 Expansion Slots (PCI Express Slots)

There are 5 PCI Express slots on the motherboard.

Before installing an expansion card, please make sure that the power supply is switched off or the power cord is unplugged. Please read the documentation of the expansion card and make necessary hardware settings for the card before you start the installation.

PCle slots:

PCIE1 (PCIe 3.0 x16 slot) is used for PCI Express x16 lane width graphics cards.
PCIE2 (PCIe 3.0 x1 slot) is used for PCI Express x1 lane width cards.
PCIE3 (PCIe 3.0 x1 slot) is used for PCI Express x1 lane width cards.
PCIE4 (PCIe 3.0 x16 slot) is used for PCI Express x4 lane width graphics cards.
PCIE5 (PCIe 3.0 x1 slot) is used for PCI Express x1 lane width cards.

PCle Slot Configurations

<table>
<thead>
<tr>
<th></th>
<th>PCIE1</th>
<th>PCIE4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single Graphics Card</td>
<td>x16</td>
<td>N/A</td>
</tr>
<tr>
<td>Two Graphics Cards in CrossFireXTM Mode</td>
<td>x16</td>
<td>x4</td>
</tr>
</tbody>
</table>

For a better thermal environment, please connect a chassis fan to the motherboard’s chassis fan connector (CHA_FAN1/WP, CHA_FAN2/WP or CHA_FAN3/WP) when using multiple graphics cards.
2.5 Jumpers Setup

The illustration shows how jumpers are setup. When the jumper cap is placed on the pins, the jumper is “Short”. If no jumper cap is placed on the pins, the jumper is “Open”.

Clear CMOS Jumper (CLRMOS1) (see p.7, No. 19)

CLRMOS1 allows you to clear the data in CMOS. The data in CMOS includes system setup information such as system password, date, time, and system setup parameters. To clear and reset the system parameters to default setup, please turn off the computer and unplug the power cord, then use a jumper cap to short the pins on CLRMOS1 for 3 seconds. Please remember to remove the jumper cap after clearing the CMOS. If you need to clear the CMOS when you just finish updating the BIOS, you must boot up the system first, and then shut it down before you do the clear-CMOS action.
2.6 Onboard Headers and Connectors

Onboard headers and connectors are NOT jumpers. Do NOT place jumper caps over these headers and connectors. Placing jumper caps over the headers and connectors will cause permanent damage to the motherboard.

System Panel Header (9-pin PANEL1) (see p.7, No. 15)

![System Panel Header Diagram]

Connect the power button, reset button and system status indicator on the chassis to this header according to the pin assignments below. Note the positive and negative pins before connecting the cables.

PWRBTN (Power Button):
Connect to the power button on the chassis front panel. You may configure the way to turn off your system using the power button.

RESET (Reset Button):
Connect to the reset button on the chassis front panel. Press the reset button to restart the computer if the computer freezes and fails to perform a normal restart.

PLED (System Power LED):
Connect to the power status indicator on the chassis front panel. The LED is on when the system is operating. The LED keeps blinking when the system is in S1/S3 sleep state. The LED is off when the system is in S4 sleep state or powered off (S5).

HDLED (Hard Drive Activity LED):
Connect to the hard drive activity LED on the chassis front panel. The LED is on when the hard drive is reading or writing data.

The front panel design may differ by chassis. A front panel module mainly consists of power button, reset button, power LED, hard drive activity LED, speaker and etc. When connecting your chassis front panel module to this header, make sure the wire assignments and the pin assignments are matched correctly.
Power LED and Speaker Header
(7-pin SPK_PLED1)
(see p.7, No. 16)

Please connect the chassis power LED and the chassis speaker to this header.

Serial ATA3 Connectors
(SATA3_0:
see p.7, No. 11)
(SATA3_1:
see p.7, No. 10)
(SATA3_2:
see p.7, No. 8)
(SATA3_3:
see p.7, No. 9)
(SATA3_4:
see p.7, No. 13)
(SATA3_5:
see p.7, No. 14)

These six SATA3 connectors support SATA data cables for internal storage devices with up to 6.0 Gb/s data transfer rate.
* If M2_1 is occupied by a SATA-type M.2 device, SATA3_1 will be disabled.
* If M2_2 is occupied by a SATA-type M.2 device, SATA3_5 will be disabled.
* If M2_1 is occupied by a PCIE-type M.2 device, SATA3_0 will be disabled.

USB 2.0 Headers
(9-pin USB_3_4)
(see p.7, No. 22)

There are two USB 2.0 headers on this motherboard.

(4-pin USB5)
(see p.7, No. 21)
USB 3.2 Gen1 Headers
(19-pin USB3_3_4)
(see p.7, No. 7)

(19-pin USB3_5_6)
(see p.7, No. 20)

There are two headers on this motherboard. Each USB 3.2 Gen1 header can support two ports.

Front Panel Audio Header
(9-pin HD_AUDIO1)
(see p.7, No. 26)

This header is for connecting audio devices to the front audio panel.

1. High Definition Audio supports Jack Sensing, but the panel wire on the chassis must support HDA to function correctly. Please follow the instructions in our manual and chassis manual to install your system.
2. If you use an AC’97 audio panel, please install it to the front panel audio header by the steps below:
 A. Connect Mic_IN (MIC) to MIC2_L.
 B. Connect Audio_R (RIN) to OUT2_R and Audio_L (LIN) to OUT2_L.
 C. Connect Ground (GND) to Ground (GND).
 D. MIC_RET and OUT_RET are for the HD audio panel only. You don’t need to connect them for the AC’97 audio panel.
 E. To activate the front mic, go to the “FrontMic” Tab in the Realtek Control panel and adjust “Recording Volume”.

Chassis/Water Pump Fan Connectors
(4-pin CHA_FAN1/WP)
(see p.7, No. 18)
(4-pin CHA_FAN2/WP)
(see p.7, No. 29)
(4-pin CHA_FAN3/WP)
(see p.7, No. 17)

This motherboard provides three 4-Pin water cooling chassis fan connectors. If you plan to connect a 3-Pin chassis water cooler fan, please connect it to Pin 1-3.

CPU Fan Connector
(4-pin CPU_FAN1)
(see p.7, No. 2)

This motherboard provides a 4-Pin CPU fan (Quiet Fan) connector. If you plan to connect a 3-Pin CPU fan, please connect it to Pin 1-3.

CPU/Water Pump Fan Connector
(4-pin CPU_FAN2/WP)
(see p.7, No. 28)

This motherboard provides a 4-Pin water cooling CPU fan connector. If you plan to connect a 3-Pin CPU water cooler fan, please connect it to Pin 1-3.

ATX Power Connector
(24-pin ATXPWR1)
(see p.7, No. 6)

This motherboard provides a 24-pin ATX power connector. To use a 20-pin ATX power supply, please plug it along Pin 1 and Pin 13.

ATX 12V Power Connector
(8-pin ATX12V1)
(see p.7, No. 1)

This motherboard provides an 8-pin ATX 12V power connector. To use a 4-pin ATX power supply, please plug it along Pin 1 and Pin 5.
SPI TPM Header
(13-pin SPI_TPM_J1)
(see p.7, No. 12)

This connector supports SPI Trusted Platform Module (TPM) system, which can securely store keys, digital certificates, passwords, and data. A TPM system also helps enhance network security, protects digital identities, and ensures platform integrity.

Thunderbolt AIC Connector
(5-pin TB1)
(see p.7, No. 27)

Please connect a Thunderbolt™ add-in card (AIC) to the Thunderbolt AIC connector via the GPIO cable.
* Please install the Thunderbolt™ AIC card to PCIE4 (default slot).

RGB LED Headers
(4-pin RGB_LED1)
(see p.7, No. 23)
(4-pin RGB_LED2)
(see p.7, No. 5)

RGB header is used to connect RGB LED extension cable which allows users to choose from various LED lighting effects.
Caution: Never install the RGB LED cable in the wrong orientation; otherwise, the cable may be damaged.
* Please refer to page 50 for further instructions on this header.
Addressable LED Header
(3-pin ADDR_LED1)
(see p.7, No. 24)

This header is used to connect Addressable LED extension cable which allows users to choose from various LED lighting effects.

Caution: Never install the Addressable LED cable in the wrong orientation; otherwise, the cable may be damaged.

* Please refer to page 51 for further instructions on this header.

Serial Port Header
(9-pin COM1)
(see p.7, No. 25)

This COM1 header supports a serial port module.
2.7 Post Status Checker

Post Status Checker (PSC) diagnoses the computer when users power on the machine. It emits a red light to indicate whether the CPU, memory, VGA or storage is dysfunctional. The lights go off if the four mentioned above are functioning normally.
2.8 CrossFireX™ and Quad CrossFireX™ Operation Guide

This motherboard supports CrossFireX™ and Quad CrossFireX™ that allows you to install up to three identical PCI Express x16 graphics cards.

1. You should only use identical CrossFireX™-ready graphics cards that are AMD certified.
2. Make sure that your graphics card driver supports AMD CrossFireX™ technology. Download the drivers from the AMD’s website: www.amd.com
3. Make sure that your power supply unit (PSU) can provide at least the minimum power your system requires. It is recommended to use a AMD certified PSU. Please refer to the AMD’s website for details.
4. If you pair a 12-pipe CrossFireX™ Edition card with a 16-pipe card, both cards will operate as 12-pipe cards while in CrossFireX™ mode.
5. Different CrossFireX™ cards may require different methods to enable CrossFireX™. Please refer to AMD graphics card manuals for detailed installation guide.

2.8.1 Installing Two CrossFireX™-Ready Graphics Cards

Step 1

Insert one graphics card into PCIE1 slot and the other graphics card to PCIE4 slot. Make sure that the cards are properly seated on the slots.

Step 2

Connect two graphics cards by installing a CrossFire Bridge on the CrossFire Bridge Interconnects on the top of the graphics cards. (The CrossFire Bridge is provided with the graphics card you purchase, not bundled with this motherboard. Please refer to your graphics card vendor for details.)
Step 3

Connect a VGA cable or a DVI cable to the monitor connector or the DVI connector of the graphics card that is inserted to PCIE1 slot.
2.8.2 Driver Installation and Setup

Step 1
Power on your computer and boot into OS.

Step 2
Remove the AMD drivers if you have any VGA drivers installed in your system.

Step 3
Install the required drivers and CATALYST Control Center then restart your computer. Please check AMD’s website for details.

Step 4
Double-click the AMD Catalyst Control Center icon in the Windows® system tray.

Step 5
In the left pane, click Performance and then AMD CrossFireX™. Then select Enable AMD CrossFireX and click Apply. Select the GPU number according to your graphics card and click Apply.
2.9 M.2 WiFi/BT Module and Intel® CNVi (Integrated WiFi/BT) Installation Guide

The M.2, also known as the Next Generation Form Factor (NGFF), is a small size and versatile card edge connector that aims to replace mPCIe and mSATA. The M.2 Socket (Key E) supports type 2230 WiFi/BT module and Intel® CNVi (Integrated WiFi/BT).

* The M.2 socket does not support SATA M.2 SSDs.

Before you install Intel® Integrated Connectivity (CNVi) module, be sure to turn off the AC power.

Installing the WiFi/BT module or Intel® CNVi (Integrated WiFi/BT)

Step 1

Prepare a type 2230 WiFi/BT module or Intel® CNVi (Integrated WiFi/BT) and the screw.

Step 2

Find the nut location to be used.
Step 3

Gently insert the WiFi/BT module or Intel® CNVi (Integrated WiFi/BT) into the M.2 slot. Please be aware that the module only fits in one orientation.

Step 4

Tighten the screw with a screwdriver to secure the module into place. Please do not overtighten the screw as this might damage the module.
2.10 M.2_SSD (NGFF) Module Installation Guide (M2_1)

The M.2, also known as the Next Generation Form Factor (NGFF), is a small size and versatile card edge connector that aims to replace mPCIe and mSATA. The Ultra M.2 Socket (M2_1) supports M Key type 2230/2242/2260/2280/22110 M.2 SATA3 6.0 Gb/s module and M.2 PCI Express module up to Gen3 x4 (32 Gb/s).

* If M2_1 is occupied by a SATA-type M.2 device, SATA3_1 will be disabled.
* If M2_1 is occupied by a PCIE-type M.2 device, SATA3_0 will be disabled.

Installing the M.2_SSD (NGFF) Module

Step 1

Prepare a M.2_SSD (NGFF) module and the screw.

Step 2

Depending on the PCB type and length of your M.2_SSD (NGFF) module, find the corresponding nut location to be used.

<table>
<thead>
<tr>
<th>No.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nut Location</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
</tr>
<tr>
<td>PCB Length</td>
<td>3cm</td>
<td>4.2cm</td>
<td>6cm</td>
<td>8cm</td>
<td>11cm</td>
</tr>
<tr>
<td>Module Type</td>
<td>Type2230</td>
<td>Type 2242</td>
<td>Type2260</td>
<td>Type 2280</td>
<td>Type 22110</td>
</tr>
</tbody>
</table>
Step 3
Before installing a M.2 (NGFF) SSD module, please loosen the screws to remove the M.2 heatsink.

Step 4
Prepare the M.2 standoff that comes with the package. Then hand tighten the standoff into the desired nut location on the motherboard. Align and gently insert the M.2 (NGFF) SSD module into the M.2 slot. Please be aware that the M.2 (NGFF) SSD module only fits in one orientation.

Step 5
Tighten the screw with a screwdriver to secure the module into place. Please do not overtighten the screw as this might damage the module.
M.2_SSD (NGFF) Module Support List

<table>
<thead>
<tr>
<th>Vendor</th>
<th>Interface</th>
<th>P/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADATA</td>
<td>SATA3</td>
<td>AXNS330E-32GM-B</td>
</tr>
<tr>
<td>ADATA</td>
<td>SATA3</td>
<td>AXNS381E-128GM-B</td>
</tr>
<tr>
<td>ADATA</td>
<td>SATA3</td>
<td>AXNS381E-256GM-B</td>
</tr>
<tr>
<td>ADATA</td>
<td>SATA3</td>
<td>ASU800NS38-256GT-C</td>
</tr>
<tr>
<td>ADATA</td>
<td>SATA3</td>
<td>ASU800NS38-512GT-C</td>
</tr>
<tr>
<td>ADATA</td>
<td>PCIe3 x4</td>
<td>ASX7000NP-128GT-C</td>
</tr>
<tr>
<td>ADATA</td>
<td>PCIe3 x4</td>
<td>ASX8000NP-256GM-C</td>
</tr>
<tr>
<td>ADATA</td>
<td>PCIe3 x4</td>
<td>ASX7000NP-256GT-C</td>
</tr>
<tr>
<td>ADATA</td>
<td>PCIe3 x4</td>
<td>ASX8000NP-512GM-C</td>
</tr>
<tr>
<td>ADATA</td>
<td>PCIe3 x4</td>
<td>ASX7000NP-512GT-C</td>
</tr>
<tr>
<td>Apacer</td>
<td>PCIe3 x4</td>
<td>AP240GZ280</td>
</tr>
<tr>
<td>Corsair</td>
<td>PCIe3 x4</td>
<td>CSSD-F240GBMP500</td>
</tr>
<tr>
<td>Crucial</td>
<td>SATA3</td>
<td>CT120M500SSD4</td>
</tr>
<tr>
<td>Crucial</td>
<td>SATA3</td>
<td>CT240M500SSD4</td>
</tr>
<tr>
<td>Intel</td>
<td>SATA3</td>
<td>Intel SSDSCKGW080A401/80G</td>
</tr>
<tr>
<td>Intel</td>
<td>PCIe3 x4</td>
<td>SSDPEKKF256G7</td>
</tr>
<tr>
<td>Intel</td>
<td>PCIe3 x4</td>
<td>SSDPEKKF512G7</td>
</tr>
<tr>
<td>Kingston</td>
<td>SATA3</td>
<td>SM2280S3</td>
</tr>
<tr>
<td>Kingston</td>
<td>PCIe3 x4</td>
<td>SKC1000/480G</td>
</tr>
<tr>
<td>Kingston</td>
<td>PCIe2 x4</td>
<td>SH2280S3/480G</td>
</tr>
<tr>
<td>OCZ</td>
<td>PCIe3 x4</td>
<td>RVD400-M2280-512G (NVME)</td>
</tr>
<tr>
<td>PATRIOT</td>
<td>PCIe3 x4</td>
<td>PH240GPM280SSDR NVME</td>
</tr>
<tr>
<td>Plextor</td>
<td>PCIe3 x4</td>
<td>PX-128M8PeG</td>
</tr>
<tr>
<td>Plextor</td>
<td>PCIe3 x4</td>
<td>PX-1TM8PeG</td>
</tr>
<tr>
<td>Plextor</td>
<td>PCIe3 x4</td>
<td>PX-256M8PeG</td>
</tr>
<tr>
<td>Plextor</td>
<td>PCIe3 x4</td>
<td>PX-512M8PeG</td>
</tr>
<tr>
<td>Plextor</td>
<td>PCIe</td>
<td>PX-G256M6e</td>
</tr>
<tr>
<td>Plextor</td>
<td>PCIe</td>
<td>PX-G512M6e</td>
</tr>
<tr>
<td>Samsung</td>
<td>PCIe3 x4</td>
<td>SM961 MZVPW128HEGM (NVM)</td>
</tr>
<tr>
<td>Samsung</td>
<td>PCIe3 x4</td>
<td>PM961 MZVLW128HEGR (NVME)</td>
</tr>
<tr>
<td>Samsung</td>
<td>PCIe3 x4</td>
<td>960 EVO (MZ-V6E250) (NVME)</td>
</tr>
<tr>
<td>Samsung</td>
<td>PCIe3 x4</td>
<td>960 EVO (MZ-V6E250BW) (NVME)</td>
</tr>
<tr>
<td>Samsung</td>
<td>PCIe3 x4</td>
<td>SM951 (NVME)</td>
</tr>
<tr>
<td>Samsung</td>
<td>PCIe3 x4</td>
<td>SM951 (MZHPV256HDGL)</td>
</tr>
<tr>
<td>Samsung</td>
<td>PCIe3 x4</td>
<td>SM951 (MZHPV512HDGL)</td>
</tr>
<tr>
<td>Samsung</td>
<td>PCIe3 x4</td>
<td>SM951 (NVME)</td>
</tr>
<tr>
<td>Samsung</td>
<td>PCIe x4</td>
<td>XP941-512G (MZHPU512HCGL)</td>
</tr>
<tr>
<td>SanDisk</td>
<td>PCIe</td>
<td>SD6PP4M-128G</td>
</tr>
<tr>
<td>SanDisk</td>
<td>PCIe</td>
<td>SD6PP4M-256G</td>
</tr>
<tr>
<td>Team</td>
<td>SATA3</td>
<td>TM4PS4128GMCi05</td>
</tr>
<tr>
<td>Team</td>
<td>SATA3</td>
<td>TM4PS4256GMCi05</td>
</tr>
<tr>
<td>Team</td>
<td>SATA3</td>
<td>TM8PS4128GMCi05</td>
</tr>
<tr>
<td>Team</td>
<td>SATA3</td>
<td>TM8PS4256GMCi05</td>
</tr>
</tbody>
</table>
For the latest updates of M.2_SSD (NFGG) module support list, please visit our website for details: http://www.asrock.com

<table>
<thead>
<tr>
<th>Team</th>
<th>Interface</th>
<th>Model Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEAM</td>
<td>PCIe3 x4</td>
<td>TM8FP2240G0C101</td>
</tr>
<tr>
<td>TEAM</td>
<td>PCIe3 x4</td>
<td>TM8FP2480GC110</td>
</tr>
<tr>
<td>Transcend</td>
<td>SATA3</td>
<td>TS256GMTS400</td>
</tr>
<tr>
<td>Transcend</td>
<td>SATA3</td>
<td>TS512GMTS600</td>
</tr>
<tr>
<td>Transcend</td>
<td>SATA3</td>
<td>TS512GMTS800</td>
</tr>
<tr>
<td>V-Color</td>
<td>SATA3</td>
<td>VLM100-120G-2280B-RD</td>
</tr>
<tr>
<td>V-Color</td>
<td>SATA3</td>
<td>VLM100-240G-2280RGB</td>
</tr>
<tr>
<td>V-Color</td>
<td>SATA3</td>
<td>VSM100-240G-2280</td>
</tr>
<tr>
<td>V-Color</td>
<td>SATA3</td>
<td>VLM100-240G-2280B-RD</td>
</tr>
<tr>
<td>WD</td>
<td>SATA3</td>
<td>WDS100TiB0B-00AS40</td>
</tr>
<tr>
<td>WD</td>
<td>SATA3</td>
<td>WDS240GiB0B-00RC30</td>
</tr>
<tr>
<td>WD</td>
<td>PCIe3 x4</td>
<td>WDS256GiX0C-00ENX0 (NVME)</td>
</tr>
<tr>
<td>WD</td>
<td>PCIe3 x4</td>
<td>WDS512GiX0C-00ENX0 (NVME)</td>
</tr>
</tbody>
</table>
2.11 M.2_SSD (NGFF) Module Installation Guide (M2_2)

The M.2, also known as the Next Generation Form Factor (NGFF), is a small size and versatile card edge connector that aims to replace mPCIe and mSATA. The Ultra M.2 Socket (M2_2) supports M Key type 2230/2242/2260/2280 M.2 SATA3 6.0 Gb/s module and M.2 PCI Express module up to Gen3 x4 (32 Gb/s).

* If M2_2 is occupied by a SATA-type M.2 device, SATA3_5 will be disabled.

Installing the M.2_SSD (NGFF) Module

Step 1

Prepare a M.2_SSD (NGFF) module and the screw.

Step 2

Depending on the PCB type and length of your M.2_SSD (NGFF) module, find the corresponding nut location to be used.

<table>
<thead>
<tr>
<th>No.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nut Location</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>PCB Length</td>
<td>3cm</td>
<td>4.2cm</td>
<td>6cm</td>
<td>8cm</td>
</tr>
<tr>
<td>Module Type</td>
<td>Type2230</td>
<td>Type 2242</td>
<td>Type2260</td>
<td>Type 2280</td>
</tr>
</tbody>
</table>
Step 3

Before installing a M.2 (NGFF) SSD module, please loosen the screws to remove the M.2 heatsink.

Step 4

Prepare the M.2 standoff that comes with the package. Then hand tighten the standoff into the desired nut location on the motherboard. Align and gently insert the M.2 (NGFF) SSD module into the M.2 slot. Please be aware that the M.2 (NGFF) SSD module only fits in one orientation.

Step 5

Tighten the screw with a screwdriver to secure the module into place. Please do not overtighten the screw as this might damage the module.
<table>
<thead>
<tr>
<th>Vendor</th>
<th>Interface</th>
<th>P/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADATA</td>
<td>SATA3</td>
<td>AXNS330E-32GM-B</td>
</tr>
<tr>
<td>ADATA</td>
<td>SATA3</td>
<td>AXNS381E-128GM-B</td>
</tr>
<tr>
<td>ADATA</td>
<td>SATA3</td>
<td>AXNS381E-256GM-B</td>
</tr>
<tr>
<td>ADATA</td>
<td>SATA3</td>
<td>ASU800NS38-256GT-C</td>
</tr>
<tr>
<td>ADATA</td>
<td>SATA3</td>
<td>ASU800NS38-512GT-C</td>
</tr>
<tr>
<td>ADATA</td>
<td>PCIe3 x4</td>
<td>ASX7000NP-128GT-C</td>
</tr>
<tr>
<td>ADATA</td>
<td>PCIe3 x4</td>
<td>ASX8000NP-256GM-C</td>
</tr>
<tr>
<td>ADATA</td>
<td>PCIe3 x4</td>
<td>ASX7000NP-256GT-C</td>
</tr>
<tr>
<td>ADATA</td>
<td>PCIe3 x4</td>
<td>ASX8000NP-512GM-C</td>
</tr>
<tr>
<td>ADATA</td>
<td>PCIe3 x4</td>
<td>ASX7000NP-512GT-C</td>
</tr>
<tr>
<td>Apacer</td>
<td>PCIe3 x4</td>
<td>AP240GZ280</td>
</tr>
<tr>
<td>Corsair</td>
<td>PCIe3 x4</td>
<td>CSSD-F240GBMP500</td>
</tr>
<tr>
<td>Crucial</td>
<td>SATA3</td>
<td>CT120M500SSD4</td>
</tr>
<tr>
<td>Crucial</td>
<td>SATA3</td>
<td>CT240M500SSD4</td>
</tr>
<tr>
<td>Intel</td>
<td>SATA3</td>
<td>Intel SSDSCKGW080A401/80G</td>
</tr>
<tr>
<td>Intel</td>
<td>PCIe3 x4</td>
<td>SSDPEKKF256G7</td>
</tr>
<tr>
<td>Intel</td>
<td>PCIe3 x4</td>
<td>SSDPEKKF512G7</td>
</tr>
<tr>
<td>Kingston</td>
<td>SATA3</td>
<td>SM2280S3</td>
</tr>
<tr>
<td>Kingston</td>
<td>PCIe3 x4</td>
<td>SKC1000/480G</td>
</tr>
<tr>
<td>Kingston</td>
<td>PCIe2 x4</td>
<td>SH2280S3/480G</td>
</tr>
<tr>
<td>OCZ</td>
<td>PCIe3 x4</td>
<td>RVD400 -M2280-512G (NVME)</td>
</tr>
<tr>
<td>PATRIOT</td>
<td>PCIe3 x4</td>
<td>PH240GPM280SSDR NVME</td>
</tr>
<tr>
<td>Plextor</td>
<td>PCIe3 x4</td>
<td>PX-128M8PeG</td>
</tr>
<tr>
<td>Plextor</td>
<td>PCIe3 x4</td>
<td>PX-1TM8PeG</td>
</tr>
<tr>
<td>Plextor</td>
<td>PCIe3 x4</td>
<td>PX-256M8PeG</td>
</tr>
<tr>
<td>Plextor</td>
<td>PCIe3 x4</td>
<td>PX-512M8PeG</td>
</tr>
<tr>
<td>Plextor</td>
<td>PCIe</td>
<td>PX-G256M6e</td>
</tr>
<tr>
<td>Plextor</td>
<td>PCIe</td>
<td>PX-G512M6e</td>
</tr>
<tr>
<td>Samsung</td>
<td>PCIe3 x4</td>
<td>SM961 MZVPW128HEGM (NVM)</td>
</tr>
<tr>
<td>Samsung</td>
<td>PCIe3 x4</td>
<td>PM961 MZVLW128HEGR (NVME)</td>
</tr>
<tr>
<td>Samsung</td>
<td>PCIe3 x4</td>
<td>960 EVO (MZ-V6E250) (NVME)</td>
</tr>
<tr>
<td>Samsung</td>
<td>PCIe3 x4</td>
<td>960 EVO (MZ-V6E250BW) (NVME)</td>
</tr>
<tr>
<td>Samsung</td>
<td>PCIe3 x4</td>
<td>SM951 (NVME)</td>
</tr>
<tr>
<td>Samsung</td>
<td>PCIe3 x4</td>
<td>SM951 (MZHPV256HDGL)</td>
</tr>
<tr>
<td>Samsung</td>
<td>PCIe3 x4</td>
<td>SM951 (MZHPV512HDGL)</td>
</tr>
<tr>
<td>Samsung</td>
<td>PCIe3 x4</td>
<td>SM951 (NVME)</td>
</tr>
<tr>
<td>Samsung</td>
<td>PCIe x4</td>
<td>XP941-512G (MZHPU512HCGL)</td>
</tr>
<tr>
<td>SanDisk</td>
<td>PCIe</td>
<td>SD6PP4M-128G</td>
</tr>
<tr>
<td>SanDisk</td>
<td>PCIe</td>
<td>SD6PP4M-256G</td>
</tr>
<tr>
<td>Team</td>
<td>SATA3</td>
<td>TM4PS4128GMC105</td>
</tr>
<tr>
<td>Team</td>
<td>SATA3</td>
<td>TM4PS4256GMC105</td>
</tr>
<tr>
<td>Team</td>
<td>SATA3</td>
<td>TM8PS4128GMC105</td>
</tr>
<tr>
<td>Team</td>
<td>SATA3</td>
<td>TM8PS4256GMC105</td>
</tr>
</tbody>
</table>
For the latest updates of M.2 SSD (NFGG) module support list, please visit our website for details: http://www.asrock.com

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Interface</th>
<th>Model Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEAM</td>
<td>PCIe x4</td>
<td>TM8FP2240G0C101</td>
</tr>
<tr>
<td>TEAM</td>
<td>PCIe x4</td>
<td>TM8FP2480GC110</td>
</tr>
<tr>
<td>Transcend</td>
<td>SATA3</td>
<td>TS256GMTS400</td>
</tr>
<tr>
<td>Transcend</td>
<td>SATA3</td>
<td>TS512GMTS600</td>
</tr>
<tr>
<td>Transcend</td>
<td>SATA3</td>
<td>TS512GMTS800</td>
</tr>
<tr>
<td>V-Color</td>
<td>SATA3</td>
<td>VLM100-120G-2280B-RD</td>
</tr>
<tr>
<td>V-Color</td>
<td>SATA3</td>
<td>VLM100-240G-2280RGB</td>
</tr>
<tr>
<td>V-Color</td>
<td>SATA3</td>
<td>VSM100-240G-2280</td>
</tr>
<tr>
<td>V-Color</td>
<td>SATA3</td>
<td>VLM100-240G-2280B-RD</td>
</tr>
<tr>
<td>WD</td>
<td>SATA3</td>
<td>WDS100T1B0B-00AS40</td>
</tr>
<tr>
<td>WD</td>
<td>SATA3</td>
<td>WDS240G1G0B-00RC30</td>
</tr>
<tr>
<td>WD</td>
<td>PCIe x4</td>
<td>WDS256G1X0C-00ENX0 (NVME)</td>
</tr>
<tr>
<td>WD</td>
<td>PCIe x4</td>
<td>WDS512G1X0C-00ENX0 (NVME)</td>
</tr>
</tbody>
</table>
Chapter 3 Software and Utilities Operation

3.1 Installing Drivers

The Support CD that comes with the motherboard contains necessary drivers and useful utilities that enhance the motherboard’s features.

Running The Support CD

To begin using the support CD, insert the CD into your CD-ROM drive. The CD automatically displays the Main Menu if “AUTORUN” is enabled in your computer. If the Main Menu does not appear automatically, locate and double click on the file “ASRSETUP.EXE” in the Support CD to display the menu.

Drivers Menu

The drivers compatible to your system will be auto-detected and listed on the support CD driver page. Please click Install All or follow the order from top to bottom to install those required drivers. Therefore, the drivers you install can work properly.

Utilities Menu

The Utilities Menu shows the application software that the motherboard supports. Click on a specific item then follow the installation wizard to install it.
3.2 A-Tuning

A-Tuning is ASRock’s multi purpose software suite with a new interface, more new features and improved utilities.

3.2.1 Installing A-Tuning

A-Tuning can be downloaded from ASRock Live Update & APP Shop. After the installation, you will find the icon “A-Tuning” on your desktop. Double-click the “A-Tuning” icon, A-Tuning main menu will pop up.

3.2.2 Using A-Tuning

There are five sections in A-Tuning main menu: Operation Mode, OC Tweaker, System Info, FAN-Tastic Tuning and Settings.

Operation Mode

Choose an operation mode for your computer.
OC Tweaker
Configurations for overclocking the system.

System Info
View information about the system.
* The System Browser tab may not appear for certain models.
FAN-Tastic Tuning

Configure up to five different fan speeds using the graph. The fans will automatically shift to the next speed level when the assigned temperature is met.

Settings

Configure ASRock A-Tuning. Click to select "Auto run at Windows Startup" if you want A-Tuning to be launched when you start up the Windows operating system.
3.3 ASRock Live Update & APP Shop

The ASRock Live Update & APP Shop is an online store for purchasing and downloading software applications for your ASRock computer. You can quickly and easily install various apps and support utilities. With ASRock Live Update & APP Shop, you can optimize your system and keep your motherboard up to date simply with a few clicks.

Double-click the icon on your desktop to access ASRock Live Update & APP Shop utility.

*You need to be connected to the Internet to download apps from the ASRock Live Update & APP Shop.

3.3.1 UI Overview

Category Panel: The category panel contains several category tabs or buttons that when selected the information panel below displays the relative information.

Information Panel: The information panel in the center displays data about the currently selected category and allows users to perform job-related tasks.

Hot News: The hot news section displays the various latest news. Click on the image to visit the website of the selected news and know more.
3.3.2 Apps

When the "Apps" tab is selected, you will see all the available apps on screen for you to download.

Installing an App

Step 1

Find the app you want to install.

The most recommended app appears on the left side of the screen. The other various apps are shown on the right. Please scroll up and down to see more apps listed.

You can check the price of the app and whether you have already installed it or not.

- The red icon displays the price or "Free" if the app is free of charge.
- The green "Installed" icon means the app is installed on your computer.

Step 2

Click on the app icon to see more details about the selected app.
Step 3
If you want to install the app, click on the red icon [Free] to start downloading.

Step 4
When installation completes, you can find the green “Installed” icon appears on the upper right corner.

To uninstall it, simply click on the trash can icon [Trash].
*The trash icon may not appear for certain apps.
Upgrading an App

You can only upgrade the apps you have already installed. When there is an available new version for your app, you will find the mark of "New Version" appears below the installed app icon.

Step 1

Click on the app icon to see more details.

Step 2

Click on the yellow icon to start upgrading.
3.3.3 BIOS & Drivers

Installing BIOS or Drivers

When the "BIOS & Drivers" tab is selected, you will see a list of recommended or critical updates for the BIOS or drivers. Please update them all soon.

Step 1

Please check the item information before update. Click on 📈 to see more details.

Step 2

Click to select one or more items you want to update.

Step 3

Click Update to start the update process.
3.3.4 Setting

In the "Setting" page, you can change the language, select the server location, and determine if you want to automatically run the ASRock Live Update & APP Shop on Windows startup.
3.4 ASRock Polychrome RGB

ASRock Polychrome RGB is a lighting control utility specifically designed for unique individuals with sophisticated tastes to build their own stylish colorful lighting system. Simply by connecting the LED strip, you can customize various lighting schemes and patterns, including Static, Breathing, Strobe, Cycling, Music, Wave and more.

Connecting the LED Strip

Connect your RGB LED strips to the **RGB LED Headers (RGB_LED1, RGB_LED2)** on the motherboard.

![Diagram of RGB LED Headers](image)

1. *Never install the RGB LED cable in the wrong orientation; otherwise, the cable may be damaged.*
2. *Before installing or removing your RGB LED cable, please power off your system and unplug the power cord from the power supply. Failure to do so may cause damages to motherboard components.*

1. *Please note that the RGB LED strips do not come with the package.*
2. *The RGB LED header supports standard 5050 RGB LED strip (12V/G/R/B), with a maximum power rating of 3A (12V) and length within 2 meters.*
Connecting the Addressable RGB LED Strip

Connect your Addressable RGB LED strip to the Addressable LED Header (ADDR_LED1) on the motherboard.

1. Never install the RGB LED cable in the wrong orientation; otherwise, the cable may be damaged.
2. Before installing or removing your RGB LED cable, please power off your system and unplug the power cord from the power supply. Failure to do so may cause damages to motherboard components.

1. Please note that the RGB LED strips do not come with the package.
2. The RGB LED header supports WS2812B addressable RGB LED strip (5V/Data/GND), with a maximum power rating of 3A (5V) and length within 2 meters.
ASRock Polychrome RGB Utility

Now you can adjust the RGB LED color through the ASRock Polychrome RGB utility. Download this utility from the ASRock Live Update & APP Shop and start coloring your PC style your way!

- **Toggle on/off the RGB LED switch**
- **Sync RGB LED effects for all LED regions of the motherboard**
- **Drag the tab to customize your preference.**
- **Select a RGB LED light effect from the drop-down menu.**
Chapter 4 UEFI SETUP UTILITY

4.1 Introduction

This section explains how to use the UEFI SETUP UTILITY to configure your system. You may run the UEFI SETUP UTILITY by pressing <F2> or right after you power on the computer, otherwise, the Power-On-Self-Test (POST) will continue with its test routines. If you wish to enter the UEFI SETUP UTILITY after POST, restart the system by pressing <Ctl> + <Alt> + <Delete>, or by pressing the reset button on the system chassis. You may also restart by turning the system off and then back on.

Because the UEFI software is constantly being updated, the following UEFI setup screens and descriptions are for reference purpose only, and they may not exactly match what you see on your screen.
4.2 EZ Mode

The EZ Mode screen appears when you enter the BIOS setup program by default. EZ mode is a dashboard which contains multiple readings of the system’s current status. You can check the most crucial information of your system, such as CPU speed, DRAM frequency, SATA information, fan speed, etc.

Press <F6> or click the "Advanced Mode" button at the upper right corner of the screen to switch to "Advanced Mode" for more options.

<table>
<thead>
<tr>
<th>No.</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Help</td>
</tr>
<tr>
<td>2</td>
<td>Load UEFI Defaults</td>
</tr>
<tr>
<td>3</td>
<td>Save Changes and Exit</td>
</tr>
<tr>
<td>4</td>
<td>Discard Changes</td>
</tr>
<tr>
<td>5</td>
<td>Change Language</td>
</tr>
<tr>
<td>6</td>
<td>Switch to Advanced Mode</td>
</tr>
</tbody>
</table>
4.3 Advanced Mode

The Advanced Mode provides more options to configure the BIOS settings. Refer to the following sections for the detailed configurations.

To access the EZ Mode, press <F6> or click the "EZ Mode" button at the upper right corner of the screen.

4.3.1 UEFI Menu Bar

The top of the screen has a menu bar with the following selections:

<table>
<thead>
<tr>
<th>Menu</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main</td>
<td>For setting system time/date information</td>
</tr>
<tr>
<td>OC Tweaker</td>
<td>For overclocking configurations</td>
</tr>
<tr>
<td>Advanced</td>
<td>For advanced system configurations</td>
</tr>
<tr>
<td>Tool</td>
<td>Useful tools</td>
</tr>
<tr>
<td>H/W Monitor</td>
<td>Displays current hardware status</td>
</tr>
<tr>
<td>Security</td>
<td>For security settings</td>
</tr>
<tr>
<td>Boot</td>
<td>For configuring boot settings and boot priority</td>
</tr>
<tr>
<td>Exit</td>
<td>Exit the current screen or the UEFI Setup Utility</td>
</tr>
</tbody>
</table>
4.3.2 Navigation Keys

Use <→> key or <←> key to choose among the selections on the menu bar, and use <↑> key or <↓> key to move the cursor up or down to select items, then press <Enter> to get into the sub screen. You can also use the mouse to click your required item.

Please check the following table for the descriptions of each navigation key.

<table>
<thead>
<tr>
<th>Navigation Key(s)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ / -</td>
<td>To change option for the selected items</td>
</tr>
<tr>
<td><Tab></td>
<td>Switch to next function</td>
</tr>
<tr>
<td><PGUP></td>
<td>Go to the previous page</td>
</tr>
<tr>
<td><PGDN></td>
<td>Go to the next page</td>
</tr>
<tr>
<td><HOME></td>
<td>Go to the top of the screen</td>
</tr>
<tr>
<td><END></td>
<td>Go to the bottom of the screen</td>
</tr>
<tr>
<td><F1></td>
<td>To display the General Help Screen</td>
</tr>
<tr>
<td><F5></td>
<td>Add / Remove Favorite</td>
</tr>
<tr>
<td><F7></td>
<td>Discard changes and exit the SETUP UTILITY</td>
</tr>
<tr>
<td><F9></td>
<td>Load optimal default values for all the settings</td>
</tr>
<tr>
<td><F10></td>
<td>Save changes and exit the SETUP UTILITY</td>
</tr>
<tr>
<td><F12></td>
<td>Print screen</td>
</tr>
<tr>
<td><ESC></td>
<td>Jump to the Exit Screen or exit the current screen</td>
</tr>
</tbody>
</table>
4.4 Main Screen

When you enter the UEFI SETUP UTILITY, the Main screen will appear and display the system overview.

My Favorite

Display your collection of BIOS items. Press F5 to add/remove your favorite items.
4.5 OC Tweaker Screen

In the OC Tweaker screen, you can set up overclocking features.

Advanced Turbo

You can use this option to increase your system performance. This option appears only when your CPU supports this function. This option appears only when you adopt K-Series CPU.

Load Optimized CPU OC Setting

You can use this option to load optimized CPU overclocking setting. Please note that overclocking may cause damage to your CPU and motherboard. It should be done at your own risk and expense.

Load Optimized GPU OC Setting

You can use this option to load optimized GPU overclocking setting. Please note that overclocking may cause damage to your GPU and motherboard. It should be done at your own risk and expense. This option appears only when you adopt K-Series CPU.
CPU Configuration

Multi Core Enhancement
Improve the system's performance by forcing the CPU to perform the highest frequency on all CPU cores simultaneously. Disable to reduce power consumption.

CPU Ratio
The CPU speed is determined by the CPU Ratio multiplied with the BCLK. Increasing the CPU Ratio will increase the internal CPU clock speed without affecting the clock speed of other components.

CPU Cache Ratio
The CPU Internal Bus Speed Ratio. The maximum should be the same as the CPU Ratio.

Minimum CPU Cache Ratio
Set the minimum CPU Internal Bus Speed Ratio.

BCLK Frequency
The CPU speed is determined by the CPU Ratio multiplied with the BCLK. Increasing the BCLK will increase the internal CPU clock speed but also affect the clock speed of other components.

BCLK Spread Spectrum
Enable BCLK Spread Spectrum to reduce electromagnetic interference for passing EMI tests. Disable to achieve higher clock speeds when overclocking.

Boot Performance Mode
Select the performance state that the BIOS will set before OS handoff.

FCLK Frequency
Configure the FCLK Frequency.

AVX Ratio Offset
AVX Ratio Offset specifies a negative offset from the CPU Ratio for AVX workloads. AVX is a more stressful workload that lower the AVX ratio to ensure maximum possible ratio for SSE workloads.

BCLK Aware Adaptive Voltage
BCLK Aware Adaptive Voltage enable/disable. When enabled, pcode will be aware of the BCLK frequency when calculating the CPU V/F curves. This is ideal for
BCLK OC to avoid high voltage overrides.

Ring to Core Ratio Offset
Disable Ring to Core Ratio Offset so the ring and core can run at the same frequency.

Intel SpeedStep Technology
Intel SpeedStep technology allows processors to switch between multiple frequencies and voltage points for better power saving and heat dissipation.

Intel Turbo Boost Technology
Intel Turbo Boost Technology enables the processor to run above its base operating frequency when the operating system requests the highest performance state.

Intel Speed Shift Technology
Enable/Disable Intel Speed Shift Technology support. Enabling will expose the CPPC v2 interface to allow for hardware controlled P-states.

Long Duration Power Limit
Configure Package Power Limit 1 in watts. When the limit is exceeded, the CPU ratio will be lowered after a period of time. A lower limit can protect the CPU and save power, while a higher limit may improve performance.

Long Duration Maintained
Configure the period of time until the CPU ratio is lowered when the Long Duration Power Limit is exceeded.

Short Duration Power Limit
Configure Package Power Limit 2 in watts. When the limit is exceeded, the CPU ratio will be lowered immediately. A lower limit can protect the CPU and save power, while a higher limit may improve performance.

CPU Core Current Limit
Configure the current limit of the CPU core. A lower limit can protect the CPU and save power, while a higher limit may improve performance.

GT Current Limit
Configure the current limit of the GT slice. A lower limit can protect the CPU and save power, while a higher limit may improve performance.

GT Frequency
Configure the frequency of the integrated GPU.

DRAM Configuration

DRAM Tweaker

Fine tune the DRAM settings by leaving marks in checkboxes. Click OK to confirm and apply your new settings.

DRAM Timing Configuration

Load XMP Setting

Load XMP settings to overclock the memory and perform beyond standard specifications.

BCLK Frequency

The CPU speed is determined by the CPU Ratio multiplied with the BCLK. Increasing the BCLK will increase the internal CPU clock speed but also affect the clock speed of other components.

DRAM Reference Clock

Select Auto for optimized settings.

DRAM Frequency

If [Auto] is selected, the motherboard will detect the memory module(s) inserted and assign the appropriate frequency automatically.

DRAM Clock

Choose a frequency to override to clock delay for memory training. DRAM Clock controls memory training only if ASRock Timing Optimization is disabled.

Primary Timing

CAS# Latency (tCL)

The time between sending a column address to the memory and the beginning of the data in response.

RAS# to CAS# Delay and Row Precharge (tRCDtRP)

RAS# to CAS# Delay: The number of clock cycles required between the opening of a row of memory and accessing columns within it.

Row Precharge: The number of clock cycles required between the issuing of the precharge command and opening the next row.
RAS# Active Time (tRAS)
The number of clock cycles required between a bank active command and issuing the precharge command.

Command Rate (CR)
The delay between when a memory chip is selected and when the first active command can be issued.

Secondary Timing

Write Recovery Time (tWR)
The amount of delay that must elapse after the completion of a valid write operation, before an active bank can be precharged.

Refresh Cycle Time (tRFC)
The number of clocks from a Refresh command until the first Activate command to the same rank.

RAS to RAS Delay (tRRD_L)
The number of clocks between two rows activated in different banks of the same rank.

RAS to RAS Delay (tRRD_S)
The number of clocks between two rows activated in different banks of the same rank.

Write to Read Delay (tWTR_L)
The number of clocks between the last valid write operation and the next read command to the same internal bank.

Write to Read Delay (tWTR_S)
The number of clocks between the last valid write operation and the next read command to the same internal bank.

Read to Precharge (tRTP)
The number of clocks that are inserted between a read command to a row precharge command to the same rank.

Four Activate Window (tFAW)
The time window in which four activates are allowed the same rank.
CAS Write Latency (tCWL)
Configure CAS Write Latency.

Third Timing

\(t_{\text{REFI}} \)
Configure refresh cycles at an average periodic interval.

\(t_{\text{CKE}} \)
Configure the period of time the DDR4 initiates a minimum of one refresh command internally once it enters Self-Refresh mode.

Turn Around Timing

\(t_{\text{RDRD}}_{\text{sg}} \)
Configure between module read to read delay.

\(t_{\text{RDRD}}_{\text{dg}} \)
Configure between module read to read delay.

\(t_{\text{RDRD}}_{\text{dr}} \)
Configure between module read to read delay.

\(t_{\text{RDRD}}_{\text{dd}} \)
Configure between module read to read delay.

\(t_{\text{RDWR}}_{\text{sg}} \)
Configure between module read to write delay.

\(t_{\text{RDWR}}_{\text{dg}} \)
Configure between module read to write delay.

\(t_{\text{RDWR}}_{\text{dr}} \)
Configure between module read to write delay.

\(t_{\text{RDWR}}_{\text{dd}} \)
Configure between module read to write delay.

\(t_{\text{WRRD}}_{\text{sg}} \)
Configure between module write to read delay.
tWRRD_dg
Configure between module write to read delay.

tWRRD_dr
Configure between module write to read delay.

tWRRD_dd
Configure between module write to read delay.

tWRWR_sg
Configure between module write to write delay.

tWRWR_dg
Configure between module write to write delay.

tWRWR_dr
Configure between module write to write delay.

tWRWR_dd
Configure between module write to write delay.

Round Trip Timing

RTL Init Value
Configure round trip latency init value for round trip latency training.

IO-L Init Value
Configure IO latency init value for IO latency training.

RTL (CH A)
Configure round trip latency for channel A.

RTL (CH B)
Configure round trip latency for channel B.

IO-L (CH A)
Configure IO latency for channel A.

IO-L (CH B)
Configure IO latency for channel B.
IO-L Offset (CH A)
Configure IO latency offset for channel A.

IO-L Offset (CH B)
Configure IO latency offset for channel B.

RFR Delay (CH A)
Configure RFR Delay for Channel A.

RFR Delay (CH B)
Configure RFR Delay for Channel B.

ODT Setting

ODT WR (A1)
Configure the memory on die termination resistors’ WR for channel A1.

ODT WR (A2)
Configure the memory on die termination resistors’ WR for channel A2.

ODT WR (B1)
Configure the memory on die termination resistors’ WR for channel B1.

ODT WR (B2)
Configure the memory on die termination resistors’ WR for channel B2.

ODT NOM (A1)
Use this to change ODT (CH A1) Auto/Manual settings. The default is [Auto].

ODT NOM (A2)
Use this to change ODT (CH A2) Auto/Manual settings. The default is [Auto].

ODT NOM (B1)
Use this to change ODT (CH B1) Auto/Manual settings. The default is [Auto].

ODT NOM (B2)
Use this to change ODT (CH B2) Auto/Manual settings. The default is [Auto].

ODT PARK (A1)
Configure the memory on die termination resistors’ PARK for channel A1.
ODT PARK (A2)
Configure the memory on die termination resistors' PARK for channel A2.

ODT PARK (B1)
Configure the memory on die termination resistors' PARK for channel B1.

ODT PARK (B2)
Configure the memory on die termination resistors' PARK for channel B2.

COMP Setting

RCOMP0: DQ ODT (Read)
Default is 121.

RCOMP1: DQ /CLK Ron (Drive Strength)
Default is 75.

RCOMP2: CMD/CTL Ron (Drive Strength)
Default is 100.

DQ ODT Driving
Adjust ODT Driving for better signal. Default is 60.

DQ Driving
Adjust DQ Driving for better signal. Default is 26.

Command Driving
Adjust Command Driving for better signal. Default is 20.

Control Driving
Adjust Control Driving for better signal. Default is 20.

Clock Driving
Adjust Clock Driving for better signal. Default is 26.

DQ Slew Rate
Adjust DQ Slew Rate for better signal. Default is 59.

Command Slew Rate
Adjust Command Slew Rate for better signal. Default is 53 for IN, 89 for 2N.
Control Slew Rate
Adjust Control Slew Rate for better signal. Default is 53.

Clock Slew Rate
Adjust Clock Slew Rate for better signal. Default is 53.

MRS Setting
MRS tCL
Configure the tCL for Memory MRS MR0.

MRS tWRtRTP
Configure the tWRtRTP for Memory MRS MRC.

MRS tCWL
Configure the tCWL for Memory MRS MR2.

MRS tCCD_L
Configure the tCL for Memory MRS MR6.

Advanced Setting
ASRock Timing Optimization
Configure the fast path through the MRC.

Realtime Memory Timing
Configure the realtime memory timings.

[Enabled] The system will allow performing realtime memory timing changes after MRC_DONE.

Command Tristate
Configure the Command Tristate Support.

Exit On Failure
Configure the Exit On Failure for MRC training steps.

Reset On Training Fail
Reset system if the MRC training fails.

MRC Fast Boot
Enable Memory Fast Boot to skip DRAM memory training for booting faster.
Voltage Configuration

CPU Core/Cache Voltage
Configure the voltage for the CPU Core/Cache.

CPU Load-Line Calibration
CPU Load-Line Calibration helps prevent CPU voltage droop when the system is under heavy loading.

GT Voltage
Configure the voltage for the integrated GPU.

GT Load-Line Calibration
GT Load-Line Calibration helps prevent integrated GPU voltage droop when the system is under heavy load.

DRAM Voltage
Use this to configure DRAM Voltage. The default value is [Auto].

DRAM Activating Power Supply
Configure the voltage for the DRAM Activating Power Supply.

PCH +1.05 Voltage
Configure the chipset voltage (1.05V).

VCCIO Voltage
Configure the voltage for the VCCIO.

VCCST Voltage
Configure the voltage for the VCCST.

VCCSA Voltage
Configure the voltage for the VCCSA.

CPU Internal PLL Voltage
Default is 0.900V. Each step is 0.015V. Adding 9-15 steps will help CPU PLL lock internal clock during High frequency under Ln2 cooling. For example: 1.020V - 1.125V will be proper value. But the voltage level will be different on each processor. User has to find the best value for the own processor. CPU Vcore Voltage must higher than CPU Internal PLL Voltage, or your processor will hang.
GT PLL Voltage
Default is 0.900V. Each step is 0.015V. Adding 9 -15 steps will help CPU PLL to lock internal clock during High frequency under Ln2 cooling. For example: 1.020V - 1.125V will be proper value. But the voltage level will be different on each processor. User has to find the best value for user's own processor.

Ring PLL Voltage
Default is 0.900V. Each step is 0.015V. Adding 9 -15 steps will help CPU PLL to lock internal clock during High frequency under Ln2 cooling. For example: 1.020V - 1.125V will be proper value. But the voltage level will be different on each processor. User has to find the best value for user's own processor.

System Agent PLL Voltage
Default is 0.900V. Each step is 0.015V. Adding 9 -15 steps will help CPU PLL to lock internal clock during High frequency under Ln2 cooling. For example: 1.020V - 1.125V will be proper value. But the voltage level will be different on each processor. User has to find the best value for user's own processor.

Memory Controller PLL Voltage
Default is 0.900V. Each step is 0.015V. Adding 9 -15 steps will help CPU PLL to lock internal clock during High frequency under Ln2 cooling. For example: 1.020V - 1.125V will be proper value. But the voltage level will be different on each processor. User has to find the best value for user's own processor.

Save User Default
Type a profile name and press enter to save your settings as user default.

Load User Default
Load previously saved user defaults.

Save User UEFI Setup Profile to Disk
It helps you to save current UEFI settings as an user profile to disk.

Load User UEFI Setup Profile from Disk
You can load previous saved profile from the disk.
4.6 Advanced Screen

In this section, you may set the configurations for the following items: CPU Configuration, Chipset Configuration, Storage Configuration, Intel(R) Thunderbolt, Super IO Configuration, ACPI Configuration, USB Configuration and Trusted Computing.

UEFI Configuration

UEFI Setup Style
Select the default mode when entering the UEFI setup utility.

Active Page on Entry
Select the default page when entering the UEFI setup utility.

Full HD UEFI
When [Auto] is selected, the resolution will be set to 1920 x 1080 if the monitor supports Full HD resolution. If the monitor does not support Full HD resolution, then the resolution will be set to 1024 x 768. When [Disable] is selected, the resolution will be set to 1024 x 768 directly.

Setting wrong values in this section may cause the system to malfunction.
4.6.1 CPU Configuration

Intel Hyper Threading Technology
Intel Hyper Threading Technology allows multiple threads to run on each core, so that the overall performance on threaded software is improved.

Active Processor Cores
Select the number of cores to enable in each processor package.

CPU C States Support
Enable CPU C States Support for power saving. It is recommended to keep C3, C6, C7 and C10 all enabled for better power saving.

Enhanced Halt State (C1E)
Enable Enhanced Halt State (C1E) for lower power consumption.

CPU C3 State Support
Enable C3 sleep state for lower power consumption.

CPU C6 State Support
Enable C6 sleep state for lower power consumption.

CPU C7 State Support
Enable C7 sleep state for lower power consumption.

CPU C10 State Support
Enable C10 sleep state for lower power consumption.

Package C State Support
Enable CPU, PCIe, Memory, Graphics C State Support for power saving.

CFG Lock
This item allows you to disable or enable the CFG Lock.

CPU Thermal Throttling
Enable CPU internal thermal control mechanisms to keep the CPU from overheating.

Intel Virtualization Technology
Intel Virtualization Technology allows a platform to run multiple operating systems and applications in independent partitions, so that one computer system can function as multiple virtual systems.

Hardware Prefetcher
Automatically prefetch data and code for the processor. Enable for better performance.

Adjacent Cache Line Prefetch
Automatically prefetch the subsequent cache line while retrieving the currently requested cache line. Enable for better performance.

Software Guard Extensions (SGX)
Use this item to enable or disable Software Controlled Software Guard Extensions (SGX).
4.6.2 Chipset Configuration

Primary Graphics Adapter
Select a primary VGA.

Above 4G Decoding
Enable or disable 64bit capable Devices to be decoded in Above 4G Address Space (only if the system supports 64 bit PCI decoding).

VT-d
Intel® Virtualization Technology for Directed I/O helps your virtual machine monitor better utilize hardware by improving application compatibility and reliability, and providing additional levels of manageability, security, isolation, and I/O performance.

SR-IOV Support
Enable/disable the SR-IOV (Single Root IO Virtualization Support) if the system has SR-IOV capable PCIe devices.

PCIE1 Link Speed
Select the link speed for PCIE1.

PCIE2 Link Speed
Select the link speed for PCIE2.
PCIE3 Link Speed
Select the link speed for PCIE3.

PCIE4 Link Speed
Select the link speed for PCIE4.

PCIE5 Link Speed
Select the link speed for PCIE5.

PCI Express Native Control
Select Enable for enhanced PCI Express power saving in OS.

PCIE ASPM Support
This option enables/disables the ASPM support for all CPU downstream devices.

PCH PCIE ASPM Support
This option enables/disables the ASPM support for all PCH PCIE devices.

DMI ASPM Support
This option enables/disables the control of ASPM on CPU side of the DMI Link.

PCH DMI ASPM Support
This option enables/disables the ASPM support for all PCH DMI devices.

Share Memory
Configure the size of memory that is allocated to the integrated graphics processor when the system boots up.

IGPU Multi-Monitor
Select disable to disable the integrated graphics when an external graphics card is installed. Select enable to keep the integrated graphics enabled at all times.

Inte(R) Ethernet Connection I219-V
Enable or disable the onboard network interface controller (Intel® I219V).

Onboard HD Audio
Enable/disable onboard HD audio. Set to Auto to enable onboard HD audio and automatically disable it when a sound card is installed.
Front Panel
Enable/disable front panel HD audio.

Onboard HDMI HD Audio
Enable audio for the onboard digital outputs.

Onboard WAN Device
Enable/disable the onboard WAN device.

WAN Radio
Enable/disable the WiFi module’s connectivity.

Bluetooth
Enable/disable the bluetooth.

Deep Sleep
Configure deep sleep mode for power saving when the computer is shut down.

Restore on AC/Power Loss
Select the power state after a power failure. If [Power Off] is selected, the power will remain off when the power recovers. If [Power On] is selected, the system will start to boot up when the power recovers.

Turn On Onboard LED in S5
Turn on/off the LED in the ACPI S5 state.

Restore Onboard LED Default
Restore the onboard LED default value.

RGB LED
This option enables/disables the RGB LED.
4.6.3 Storage Configuration

SATA Controller(s)
Enable/disable the SATA controllers.

SATA Mode Selection
[AHCI] Supports new features that improve performance.

[Intel RST Premium (RAID)] Combine multiple disk drives into a logical unit.

SATA Aggressive Link Power Management
SATA Aggressive Link Power Management allows SATA devices to enter a low power state during periods of inactivity to save power. It is only supported by AHCI mode.

Hard Disk S.M.A.R.T.
S.M.A.R.T stands for Self-Monitoring, Analysis, and Reporting Technology. It is a monitoring system for computer hard disk drives to detect and report on various indicators of reliability.
4.6.4 Intel® Thunderbolt

Discrete Thunderbolt(TM) Support
Enable or disable the Discrete Thunderbolt(TM) Support.

Thunderbolt Boot Support
Enabled to allow booting from Bootable devices which are present behind Thunderbolt.

Thunderbolt Usb Support
Enabled to allow booting from Usb devices which are present behind Thunderbolt.

Titan Ridge Workaround for OSUP
Enable or disable Titan Ridge Workaround for OSUP.

Security Level
This item allows you to choose a security level for the Thunderbolt ports.

SW SMI on TBT hot-plug
When enabled, BIOS generates software SMI to assign resource to TBT devices.

ACPI Notify on TBT Hot-plug
When enabled, BIOS generates ACPI Notify.
Windows 10 Thunderbolt support

Specify Windows 10 Thunderbolt support level.

Disabled: No OS native support.

Enabled: OS Native support only. no RTD3.
4.6.5 Super IO Configuration

Serial Port
Enable or disable the Serial port.

Serial Port Address
Select the address of the Serial port.

PS2 Y-Cable
Enable the PS2 Y-Cable or set this option to Auto.
4.6.6 ACPI Configuration

Suspend to RAM
Select disable for ACPI suspend type S1. It is recommended to select auto for ACPI S3 power saving.

ACPI HPET Table
Enable the High Precision Event Timer for better performance and to pass WHQL tests.

PS/2 Keyboard S4/S5 Wakeup Support
Allow the system to be waked up by a PS/2 Keyboard in S4/S5.

PCIE Devices Power On
Allow the system to be waked up by a PCIE device and enable wake on LAN.

I219 LAN Power On
Allow the system to be waked up by I219 LAN.

Ring-In Power On
Allow the system to be waked up by onboard COM port modem Ring-In signals.

RTC Alarm Power On
Allow the system to be waked up by the real time clock alarm. Set it to By OS to let
it be handled by your operating system.

USB Keyboard/Remote Power On
Allow the system to be waked up by an USB keyboard or remote controller.

USB Mouse Power On
Allow the system to be waked up by an USB mouse.
4.6.7 USB Configuration

Legacy USB Support
Enable or disable Legacy OS Support for USB 2.0 devices. If you encounter USB compatibility issues it is recommended to disable legacy USB support. Select UEFI Setup Only to support USB devices under the UEFI setup and Windows/Linux operating systems only.

XHCI Hand-off
This is a workaround for OSes without XHCI hand-off support. The XHCI ownership change should be claimed by XHCI driver.
4.6.8 Trusted Computing

Security Device Support

Enable or disable BIOS support for security device.
4.7 Tools

ASRock Polychrome RGB

ASRock Polychrome RGB allows you to adjust the RGB LED color to your liking.

UEFI Tech Service

Contact ASRock Tech Service if you are having trouble with your PC. Please setup network configuration before using UEFI Tech Service.

Easy RAID Installer

Easy RAID Installer helps you to copy the RAID driver from the support CD to your USB storage device. After copying the drivers please change the SATA mode to RAID, then you can start installing the operating system in RAID mode.

SSD Secure Erase Tool

Use this tool to securely erase SSD.
Event Logs
Use this to configure event log settings.

Erase Event Log
Choose options for erasing Smbios Event Log. Erasing is done prior to any logging activation during reset.

View Event Log
View the Event Log records.

Instant Flash
Save UEFI files in your USB storage device and run Instant Flash to update your UEFI.

Internet Flash - DHCP (Auto IP), Auto
ASRock Internet Flash downloads and updates the latest UEFI firmware version from our servers for you. Please setup network configuration before using Internet Flash.
*For BIOS backup and recovery purpose, it is recommended to plug in your USB pen drive before using this function.
Network Configuration
Use this to configure internet connection settings for Internet Flash.

Internet Setting
Enable or disable sound effects in the setup utility.

UEFI Download Server
Select a server to download the UEFI firmware.
4.8 Hardware Health Event Monitoring Screen

This section allows you to monitor the status of the hardware on your system, including the parameters of the CPU temperature, motherboard temperature, fan speed and voltage.

Fan Tuning

Measure Fan Min Duty Cycle.

Fan-Tastic Tuning

Select a fan mode for CPU Fan 1, or choose Customize to set 5 CPU temperatures and assign a respective fan speed for each temperature.

CPU Fan 1 Setting

Select a fan mode for CPU Fan 1, or choose Customize to set 5 CPU temperatures and assign a respective fan speed for each temperature.

CPU Fan 1 Step Up

Set the value of CPU Fan 1 Step Up.

CPU Fan 1 Step Down

Set the value of CPU Fan 1 Step Down.

CPU_FAN2 / W_Pump Switch

Select CPU Water Pump mode.
CPU Fan 2 Control Mode
Select PWM mode or DC mode for CPU Fan 2.

CPU Fan 2 Setting
Select a fan mode for CPU Fan 2, or choose Customize to set 5 CPU temperatures and assign a respective fan speed for each temperature.

CPU Fan 2 Step Up
Set the value of CPU Fan 2 Step Up.

CPU Fan 2 Step Down
Set the value of CPU Fan 2 Step Down.

CHA_FAN1 / W_Pump Switch
Select Chassis Fan 1 or Water Pump mode.

Chassis Fan 1 Control Mode
Select PWM mode or DC mode for Chassis Fan 1.

Chassis Fan 1 Setting
Select a fan mode for Chassis Fan 1, or choose Customize to set 5 CPU temperatures and assign a respective fan speed for each temperature.

Chassis Fan 1 Temp Source
Select a fan temperature source for Chassis Fan 1.

Chassis Fan 1 Step Up
Set the value of Chassis Fan 1 Step Up.

Chassis Fan 1 Step Down
Set the value of Chassis Fan 1 Step Down.

CHA_FAN2 / W_Pump Switch
Select Chassis Fan 2 or Water Pump mode.

Chassis Fan 2 Control Mode
Select PWM mode or DC mode for Chassis Fan 2.

Chassis Fan 2 Setting
Select a fan mode for Chassis Fan 2, or choose Customize to set 5 CPU temperatures
and assign a respective fan speed for each temperature.

Chassis Fan 2 Temp Source
Select a fan temperature source for Chassis Fan 2.

Chassis Fan 2 Step Up
Set the value of Chassis Fan 2 Step Up.

Chassis Fan 2 Step Down
Set the value of Chassis Fan 2 Step Down.

CHA_FAN3 / W_Pump Switch
Select Chassis Fan 3 or Water Pump mode.

Chassis Fan 3 Control Mode
Select PWM mode or DC mode for Chassis Fan 3.

Chassis Fan 3 Setting
Select a fan mode for Chassis Fan 3, or choose Customize to set 5 CPU temperatures and assign a respective fan speed for each temperature.

Chassis Fan 3 Temp Source
Select a fan temperature source for Chassis Fan 3.

Chassis Fan 3 Step Up
Set the value of Chassis Fan 3 Step Up.

Chassis Fan 3 Step Down
Set the value of Chassis Fan 3 Step Down.
4.9 Security Screen

In this section you may set or change the supervisor/user password for the system. You may also clear the user password.

Supervisor Password
Set or change the password for the administrator account. Only the administrator has authority to change the settings in the UEFI Setup Utility. Leave it blank and press enter to remove the password.

User Password
Set or change the password for the user account. Users are unable to change the settings in the UEFI Setup Utility. Leave it blank and press enter to remove the password.

Secure Boot
Use this item to enable or disable support for Secure Boot.

Intel(R) Platform Trust Technology
Enable/disable Intel PTT in ME. Disable this option to use discrete TPM Module.
4.10 Boot Screen

This section displays the available devices on your system for you to configure the boot settings and the boot priority.

Fast Boot

Fast Boot minimizes your computer's boot time. In fast mode you may not boot from an USB storage device. The VBIOS must support UEFI GOP if you are using an external graphics card. Please notice that Ultra Fast mode will boot so fast that the only way to enter this UEFI Setup Utility is to Clear CMOS or run the Restart to UEFI utility in Windows.

Boot From Onboard LAN

Allow the system to be waked up by the onboard LAN.

Setup Prompt Timeout

Configure the number of seconds to wait for the setup hot key.

Bootup Num-Lock

Select whether Num Lock should be turned on or off when the system boots up.

Boot Beep

Select whether the Boot Beep should be turned on or off when the system boots up. Please note that a buzzer is needed.
Full Screen Logo
Enable to display the boot logo or disable to show normal POST messages.

AddOn ROM Display
Enable AddOn ROM Display to see the AddOn ROM messages or configure the AddOn ROM if you’ve enabled Full Screen Logo. Disable for faster boot speed.

Boot Failure Guard Message
If the computer fails to boot for a number of times the system automatically restores the default settings.

CSM (Compatibility Support Module)

![Image of ASRock UEFI interface with CSM option]

CSM
Enable to launch the Compatibility Support Module. Please do not disable unless you’re running a WHCK test.

Launch PXE OpROM Policy
Select UEFI only to run those that support UEFI option ROM only. Select Legacy only to run those that support legacy option ROM only. Select Do not launch to not execute both legacy and UEFI option ROM.
Launch Storage OpROM Policy

Select UEFI only to run those that support UEFI option ROM only. Select Legacy only to run those that support legacy option ROM only. Select Do not launch to not execute both legacy and UEFI option ROM.

Other PCI Device ROM Priority

For PCI devices other than Network. Mass storage or Video defines which OpROM to launch.
4.11 Exit Screen

![Exit Screen](image)

Save Changes and Exit
When you select this option the following message, “Save configuration changes and exit setup?” will pop out. Select [OK] to save changes and exit the UEFI SETUP UTILITY.

Discard Changes and Exit
When you select this option the following message, “Discard changes and exit setup?” will pop out. Select [OK] to exit the UEFI SETUP UTILITY without saving any changes.

Discard Changes
When you select this option the following message, “Discard changes?” will pop out. Select [OK] to discard all changes.

Load UEFI Defaults
Load UEFI default values for all options. The F9 key can be used for this operation.

Launch EFI Shell from filesystem device
Copy shellx64.elf to the root directory to launch EFI Shell.
Contact Information

If you need to contact ASRock or want to know more about ASRock, you’re welcome to visit ASRock’s website at http://www.asrock.com; or you may contact your dealer for further information. For technical questions, please submit a support request form at https://event.asrock.com/tsd.asp

ASRock Incorporation
2F., No.37, Sec. 2, Jhongyang S. Rd., Beitou District,
Taipei City 112, Taiwan (R.O.C.)

ASRock EUROPE B.V.
Bijsterhuizen 11-11
6546 AR Nijmegen
The Netherlands
Phone: +31-24-345-44-33
Fax: +31-24-345-44-38

ASRock America, Inc.
13848 Magnolia Ave, Chino, CA91710
U.S.A.
Phone: +1-909-590-8308
Fax: +1-909-590-1026
DECLARATION OF CONFORMITY
Per FCC Part 2 Section 2.1077(a)

Responsible Party Name: ASRock Incorporation

Address: 13848 Magnolia Ave, Chino, CA91710

Phone/Fax No: +1-909-590-8308/+1-909-590-1026

hereby declares that the product

Product Name : Motherboard

Model Number : Z390 Steel Legend

Conforms to the following specifications:

☒ FCC Part 15, Subpart B, Unintentional Radiators

Supplementary Information:

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

Representative Person’s Name: James

Signature: [Signature]

Date: May 12, 2017
EU Declaration of Conformity

For the following equipment:

Motherboard

(Product Name)

Z390 Steel Legend / ASRock

(Model Designation / Trade Name)

ASRock Incorporation

(Manufacturer Name)

2F., No.37, Sec. 2, Jhongyang S. Rd., Beitou District, Taipei City 112, Taiwan (R.O.C.)

(Manufacturer Address)

☑ EMC — Directive 2014/30/EU (from April 20th, 2016)
☐ EN 55022:2010 / AC: 2011 Class B
☒ EN 55032:2012 / AC: 2013 Class B
☒ EN 61000-3-2:2014
☒ EN 61000-3-3:2013

☐ LVD — Directive 2014/35/EU (from April 20th, 2016)
☐ EN 60950-1: 2011 + A2: 2013
☐ EN 60950-1: 2006 / A12: 2011

☒ RoHS — Directive 2011/65/EU
☒ CE marking

(EU conformity marking)

ASRock EUROPE B.V.

(Company Name)

Bijsterhuizen 1111 6546 AR Nijmegen The Netherlands

(Company Address)

Person responsible for making this declaration:

(Name, Surname)

A.V.P

(Position / Title)

April 26, 2019

(Date)

P/N: 15G062155001AK V1.1