H410TM-ITX

User Manual
This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions:

1. this device may not cause harmful interference, and
2. this device must accept any interference received, including interference that may cause undesired operation.

CALIFORNIA, USA ONLY

The Lithium battery adopted on this motherboard contains Perchlorate, a toxic substance controlled in Perchlorate Best Management Practices (BMP) regulations passed by the California Legislature. When you discard the Lithium battery in California, USA, please follow the related regulations in advance.

“Perchlorate Material-special handling may apply, see www.dtsc.ca.gov/hazardouswaste/perchlorate”
AUSTRALIA ONLY

Our goods come with guarantees that cannot be excluded under the Australian Consumer Law. You are entitled to a replacement or refund for a major failure and compensation for any other reasonably foreseeable loss or damage caused by our goods. You are also entitled to have the goods repaired or replaced if the goods fail to be of acceptable quality and the failure does not amount to a major failure.

The terms HDMI™ and HDMI High-Definition Multimedia Interface, and the HDMI logo are trademarks or registered trademarks of HDMI Licensing LLC in the United States and other countries.
Contents

Chapter 1 Introduction
1.1 Package Contents 1
1.2 Specifications 2
1.3 Motherboard Layout 6
1.4 I/O Panel 8

Chapter 2 Installation 9
2.1 Installing the CPU 10
2.2 Installing the CPU Fan and Heatsink 13
2.3 Installing Memory Modules (SO-DIMM) 14
2.4 Jumpers Setup 15
2.5 Onboard Headers and Connectors 17
2.6 M.2 WiFi/BT Module Installation Guide 21
2.7 M.2_SSD (NGFF) Module Installation Guide 23

Chapter 3 Software and Utilities Operation 28
3.1 Installing Drivers 28

Chapter 4 UEFI SETUP UTILITY 29
4.1 Introduction 29
4.2 EZ Mode 30
4.3 Advanced Mode 31
4.3.1 UEFI Menu Bar 31
4.3.2 Navigation Keys 32
4.4 Main Screen 33
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>OC Tweaker Screen</td>
<td>34</td>
</tr>
<tr>
<td>4.6</td>
<td>Advanced Screen</td>
<td>42</td>
</tr>
<tr>
<td>4.6.1</td>
<td>CPU Configuration</td>
<td>43</td>
</tr>
<tr>
<td>4.6.2</td>
<td>Chipset Configuration</td>
<td>45</td>
</tr>
<tr>
<td>4.6.3</td>
<td>Storage Configuration</td>
<td>47</td>
</tr>
<tr>
<td>4.6.4</td>
<td>Super IO Configuration</td>
<td>48</td>
</tr>
<tr>
<td>4.6.5</td>
<td>ACPI Configuration</td>
<td>49</td>
</tr>
<tr>
<td>4.6.6</td>
<td>USB Configuration</td>
<td>50</td>
</tr>
<tr>
<td>4.6.7</td>
<td>Trusted Computing</td>
<td>51</td>
</tr>
<tr>
<td>4.7</td>
<td>Tools</td>
<td>53</td>
</tr>
<tr>
<td>4.8</td>
<td>Hardware Health Event Monitoring Screen</td>
<td>55</td>
</tr>
<tr>
<td>4.9</td>
<td>Security Screen</td>
<td>57</td>
</tr>
<tr>
<td>4.10</td>
<td>Boot Screen</td>
<td>58</td>
</tr>
<tr>
<td>4.11</td>
<td>Exit Screen</td>
<td>60</td>
</tr>
</tbody>
</table>
Chapter 1 Introduction

Thank you for purchasing H410TM-ITX motherboard. In this documentation, Chapter 1 and 2 contains the introduction of the motherboard and step-by-step installation guides. Chapter 3 contains the operation guide of the software and utilities. Chapter 4 contains the configuration guide of the BIOS setup.

1.1 Package Contents

- H410TM-ITX Motherboard (Thin Mini-ITX Form Factor)
- H410TM-ITX Quick Installation Guide (Optional)
- 1 x Thin-Mini ITX I/O Shield (Optional)
- 1 x Mini ITX I/O Shield (Optional)
- 1 x Serial ATA (SATA) Data Cable (Optional)
- 1 x SATA Power Cable (Optional)
- 2 x Screws for M.2 Sockets (M2*2) (Optional)
1.2 Specifications

Platform
- Thin Mini-ITX Form Factor
- Solid Capacitor design

CPU
- Supports 10th Gen Intel® Core™ Processors (Socket 1200)
- 4 Power Phase design
- Supports Intel® Turbo Boost Max 3.0 Technology

Chipset
- Intel® H410

Memory
- Dual Channel DDR4 Memory Technology
- 2 x DDR4 SO-DIMM Slots
- Supports DDR4 2933/2800/2666/2400/2133 non-ECC, unbuffered memory
* Please refer to Memory Support List on ASRock’s website for more information. (http://www.asrock.com/)
- Core™ (i9/i7) support DDR4 up to 2933; Core™ (i5/i3), Pentium® and Celeron® support DDR4 up to 2666.
- Max. capacity of system memory: 64GB
- Supports Intel® Extreme Memory Profile (XMP) 2.0

Expansion Slot
- 1 x M.2 Socket (Key E), supports type 2230 WiFi/BT module

Graphics
- Intel® UHD Graphics Built-in Visuals and the VGA outputs can be supported only with processors which are GPU integrated.
- Hardware Accelerated Codecs: AVC/H.264, HEVC/H.265 8bit, HEVC/H.265 10bit, VP8, VP9 8bit, VP9 10bit, MPEG 2, MJPEG, VC-1
* VP9 10bit and VC-1 are for decode only.
* VP8 and VP9 encode are not supported by Windows OS.
• Graphics, Media & Compute: Microsoft DirectX 12, OpenGL 4.5, Intel® Built In Visuals, Intel® Quick Sync Video, Hybrid / Switchable Graphics, OpenCL 2.1
• Display & Content Security: Rec. 2020 (Wide Color Gamut), Microsoft PlayReady 3.0, Intel® SGX Content Protection, UHD/HDR Blu-ray Disc
• Three graphics output options: 2 x HDMI, 1 x LVDS ports
• Supports 2 x HDMI 1.4 with max. resolution up to 4K x 2K (4096x2160) @ 30Hz
 HDMI x 1 port (Rear)
 HDMI x 1 port (Internal)
• Supports Auto Lip Sync, Deep Color (12bpc), xvYCC and HBR (High Bit Rate Audio) with HDMI 1.4 Port (Compliant HDMI monitor is required)
• Supports LVDS with max. resolution up to 1920x1080 @ 60Hz
• Supports HDCP 2.3 with HDMI 1.4 Port
• Supports 4K Ultra HD (UHD) playback with HDMI 1.4 Port

Audio
• Realtek ALC233 Audio Codec
• 1 x Line out
• 1 x MIC-In

LAN
• PCIE x1 Gigabit LAN 10/100/1000 Mb/s
• Realtek RTL8111H
• Supports Wake-On-LAN
• Supports Lightning/ESD Protection
• Supports Energy Efficient Ethernet 802.3az
• Supports PXE

I/O
• 1 x DC Jack (Compatible with the 19V power adapter)
• 1 x Serial Port: COM
• 2 x HDMI Ports: HDMI1 (Rear), HDMI2 (Internal)
• 4 x USB 3.2 Gen1 Ports (Supports ESD Protection)
• 1 x RJ-45 LAN Port with LED (ACT/LINK LED and SPEED LED)
• HD Audio Jacks: Line out / Microphone
Storage
- 2 x SATA3 6.0 Gb/s Connectors, support NCQ, AHCI and Hot Plug
- 1 x Ultra M.2 Socket, supports M Key type 2260/2280 M.2 SATA3 6.0 Gb/s module and M.2 PCI Express module up to Gen3 x4 (32 Gb/s)
* Supports NVMe SSD as boot disks

Connector
- 1 x Chassis Intrusion Header
- 1 x Panel Voltage Selection Header
- 1 x Backlight Inverter Voltage Selection Header
- 1 x FPD Brightness Header
- 1 x Panel Off Header
- 1 x LVDS Connector
- 2 x CPU Fan Connectors (4-pin)
* The CPU Fan Connectors support the CPU fan of maximum 1A (12W) fan power.
- 1 x 4 pin 19V Power Connector
- 1 x Thermal Sensor Header (2-Pin)
- 1 x Front Panel Audio Connector
- 1 x Internal Speaker Header (4-Pin)
- 2 x SATA Power Connectors
- 2 x USB 2.0 Headers (Support 4 USB 2.0 ports) (Supports ESD Protection)

BIOS Feature
- AMI UEFI Legal BIOS with GUI support
- ACPI 6.0 Compliant wake up events
- SMBIOS 2.7 Support

Hardware Monitor
- CPU Temperature Sensing
- CPU Fan Tachometer
- CPU Quiet Fan (Auto adjust chassis fan speed by CPU temperature)
- CPU Fan Multi-Speed Control
- CASE OPEN detection
- Voltage monitoring: +12V, +5V, +3.3V, CPU Vcore

OS
- Microsoft® Windows® 10 64-bit

Power
- 1 x DC Jack (Supports 19V DC Power Adapters)
Certifications

- FCC, CE
- ErP/EuP ready (ErP/EuP ready power supply is required)

⚠️ Please realize that there is a certain risk involved with overclocking, including adjusting the setting in the BIOS, applying Untied Overclocking Technology, or using third-party overclocking tools. Overclocking may affect your system’s stability, or even cause damage to the components and devices of your system. It should be done at your own risk and expense. We are not responsible for possible damage caused by overclocking.
1.3 Motherboard Layout
<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4 pin 19V Power Connector (ATX_PWR1)</td>
</tr>
<tr>
<td>2</td>
<td>SATA Power Connector (SATAPWR2)</td>
</tr>
<tr>
<td>3</td>
<td>SATA3 Connector (SATA_1)</td>
</tr>
<tr>
<td>4</td>
<td>SATA Power Connector (SATAPWR1)</td>
</tr>
<tr>
<td>5</td>
<td>Clear CMOS Jumper (CLRCMOS1)</td>
</tr>
<tr>
<td>6</td>
<td>SATA3 Connector (SATA_2)</td>
</tr>
<tr>
<td>7</td>
<td>USB 2.0 Header (USB2_1_2)</td>
</tr>
<tr>
<td>8</td>
<td>USB 2.0 Header (USB2_3_4)</td>
</tr>
<tr>
<td>9</td>
<td>FPD Brightness Header (BLT_VOL1)</td>
</tr>
<tr>
<td>10</td>
<td>Panel Voltage Selection Header (PNL_PWR1)</td>
</tr>
<tr>
<td>11</td>
<td>Backlight Inverter Voltage Selection Header (BKT_PWR1)</td>
</tr>
<tr>
<td>12</td>
<td>Panel Off Header (PNL_SW1)</td>
</tr>
<tr>
<td>13</td>
<td>LVDS Connector (LVDS1)</td>
</tr>
<tr>
<td>14</td>
<td>2 x 260-pin DDR4 SO-DIMM Slots (DDR4_A1, DDR4_A2)</td>
</tr>
<tr>
<td>15</td>
<td>CPU Fan Connector (CPU_FAN1)</td>
</tr>
<tr>
<td>16</td>
<td>Chassis Intrusion Header (CI1)</td>
</tr>
<tr>
<td>17</td>
<td>CPU Fan Connector (CPU_FAN2)</td>
</tr>
<tr>
<td>18</td>
<td>System Panel Header (PANEL1)</td>
</tr>
<tr>
<td>19</td>
<td>Internal Speaker Header (SPK_OUT1)</td>
</tr>
<tr>
<td>20</td>
<td>Front Panel Audio Header (HD_AUDIO1)</td>
</tr>
<tr>
<td>21</td>
<td>Thermal Sensor Header (TH1)</td>
</tr>
</tbody>
</table>
1.4 I/O Panel

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DC Jack**</td>
<td>5</td>
<td>LAN RJ-45 Port*</td>
</tr>
<tr>
<td>2</td>
<td>HDMI Port (HDMI1)</td>
<td>6</td>
<td>USB 3.2 Gen1 Port (USB3_12)</td>
</tr>
<tr>
<td>3</td>
<td>COM Port</td>
<td>7</td>
<td>Microphone (Pink)</td>
</tr>
<tr>
<td>4</td>
<td>USB 3.2 Gen1 Port (USB3_34)</td>
<td>8</td>
<td>Line out (Lime)</td>
</tr>
</tbody>
</table>

There are two LEDs on each LAN port. Please refer to the table below for the LAN port LED indications.

Activity / Link LED

<table>
<thead>
<tr>
<th>Status</th>
<th>Description</th>
<th>Status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>No Link</td>
<td>Off</td>
<td>10Mbps connection</td>
</tr>
<tr>
<td>Blinking</td>
<td>Data Activity</td>
<td>Green</td>
<td>100Mbps connection</td>
</tr>
<tr>
<td>On</td>
<td>Link</td>
<td>Green</td>
<td>1Gbps connection</td>
</tr>
</tbody>
</table>

** Please use a 19V power adapter for the DC jack. This jack accepts dual barrel plugs with an inner diameter of 2.5 mm and an outer diameter of 5.5 mm, where the inner contact is +19 (±10%) DC and the shell is (centre positive).

<table>
<thead>
<tr>
<th>Brand</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>DELTA</td>
<td>DELTA-ADP-150TB-150W/19V</td>
</tr>
<tr>
<td>HP</td>
<td>HP-TBC-BA52-150W/19V</td>
</tr>
<tr>
<td>FSP</td>
<td>FSP-FSP150-ABAN1-150W/19V</td>
</tr>
<tr>
<td>DELL</td>
<td>FA130PE1-00-130W/19.5V</td>
</tr>
<tr>
<td>DELL</td>
<td>LA90PE0-01-90W/19.5V</td>
</tr>
<tr>
<td>DELTA</td>
<td>DELTA-ADP-180TB-180W/19V</td>
</tr>
<tr>
<td>FSP</td>
<td>FSP-FSP180-ABBN3-180W/19V</td>
</tr>
</tbody>
</table>

This motherboard is available with support for either 4-pin ATX 19V power or DC-in power supplies. Please do not use two kinds of power supplies at the same time! Doing so may damage the motherboard components and devices. When you use the DC-in power adapter, please use the onboard SATA power connector to get the power for HDDs.
Chapter 2 Installation

This is a Thin Mini-ITX form factor motherboard. Before you install the motherboard, study the configuration of your chassis to ensure that the motherboard fits into it.

Pre-installation Precautions

Take note of the following precautions before you install motherboard components or change any motherboard settings.

- Make sure to unplug the power cord before installing or removing the motherboard. Failure to do so may cause physical injuries to you and damages to motherboard components.
- In order to avoid damage from static electricity to the motherboard’s components, NEVER place your motherboard directly on a carpet. Also remember to use a grounded wrist strap or touch a safety grounded object before you handle the components.
- Hold components by the edges and do not touch the ICs.
- Whenever you uninstall any components, place them on a grounded anti-static pad or in the bag that comes with the components.
- When placing screws to secure the motherboard to the chassis, please do not overtighten the screws! Doing so may damage the motherboard.
2.1 Installing the CPU

1. Before you insert the 1200-Pin CPU into the socket, please check if the PnP cap is on the socket, if the CPU surface is unclean, or if there are any bent pins in the socket. Do not force to insert the CPU into the socket if above situation is found. Otherwise, the CPU will be seriously damaged.

2. Unplug all power cables before installing the CPU.
Please save and replace the cover if the processor is removed. The cover must be placed if you wish to return the motherboard for after service.
2.2 Installing the CPU Fan and Heatsink
2.3 Installing Memory Modules (SO-DIMM)

This motherboard provides two 260-pin DDR4 (Double Data Rate 4) SO-DIMM slots.

🌟 It is not allowed to install a DDR, DDR2 or DDR3 memory module into a DDR4 slot; otherwise, this motherboard and SO-DIMM may be damaged.

⚠️ The SO-DIMM only fits in one correct orientation. It will cause permanent damage to the motherboard and the DIMM if you force the DIMM into the slot at incorrect orientation.

1. [Diagram showing SO-DIMM installation]

2. [Diagram showing SO-DIMM correctly seated]

[Diagram showing SO-DIMM incorrectly seated]
2.4 Jumpers Setup

The illustration shows how jumpers are setup. When the jumper cap is placed on the pins, the jumper is “Short”. If no jumper cap is placed on the pins, the jumper is “Open”.

Clear CMOS Jumper
(CLRCMOS1)
(see p.6, No. 5)

2-pin Jumper

CLRMOS1 allows you to clear the data in CMOS. To clear and reset the system parameters to default setup, please turn off the computer and unplug the power cord from the power supply. After waiting for 15 seconds, use a jumper cap to short the pins on CLRMOS1 for 5 seconds. However, please do not clear the CMOS right after you update the BIOS. If you need to clear the CMOS when you just finish updating the BIOS, you must boot up the system first, and then shut it down before you do the clear-CMOS action. Please be noted that the password, date, time, and user default profile will be cleared only if the CMOS battery is removed. Please remember to remove the jumper cap after clearing the CMOS.

If you clear the CMOS, the case open may be detected. Please adjust the BIOS option “Clear Status” to clear the record of previous chassis intrusion status.
Backlight Inverter Voltage Selection Header (3-pin BKT_PWR1) (see p.6, No. 11)

1-2 : +19V
2-3 : +12V

Panel Voltage Selection Header (3-pin PNL_PWR1) (see p.6, No. 10)

1-2 : +3V
2-3 : +5V

Warning:
If selected Backlight Power or Panel Power is higher than panel's spec, it may damage the panel.
2.5 Onboard Headers and Connectors

Onboard headers and connectors are NOT jumpers. Do NOT place jumper caps over these headers and connectors. Placing jumper caps over the headers and connectors will cause permanent damage to the motherboard.

System Panel Header
(9-pin PANEL1)
(see p.6, No. 18)

Connect the power button, reset button and system status indicator on the chassis to this header according to the pin assignments below. Note the positive and negative pins before connecting the cables.

PWRBTN (Power Button): Connect to the power button on the chassis front panel. You may configure the way to turn off your system using the power button.

RESET (Reset Button): Connect to the reset button on the chassis front panel. Press the reset button to restart the computer if the computer freezes and fails to perform a normal restart.

PLED (System Power LED): Connect to the power status indicator on the chassis front panel. The LED is on when the system is operating. The LED keeps blinking when the system is in S1/S3 sleep state. The LED is off when the system is in S4 sleep state or powered off (S5).

HDLED (Hard Drive Activity LED): Connect to the hard drive activity LED on the chassis front panel. The LED is on when the hard drive is reading or writing data.

The front panel design may differ by chassis. A front panel module mainly consists of power button, reset button, power LED, hard drive activity LED, speaker and etc. When connecting your chassis front panel module to this header, make sure the wire assignments and the pin assignments are matched correctly.
Internal Speaker Header
(4-pin SPK_OUT1)
(see p.6, No. 19)

Please connect the chassis speaker to this header.

Serial ATA3 Connectors
(SATA_1:
see p.6, No. 3)
(SATA_2:
see p.6, No. 6)

These two SATA3 connectors support SATA data cable for internal storage devices with up to 6.0 Gb/s data transfer rate.

SATA Power Connectors
(SATAPWR1:
see p.6, No. 4)
(SATAPWR2:
see p.6, No. 2)

Please connect SATA power cables.

USB 2.0 Headers
(9-pin USB2_1_2)
(see p.6, No. 7)
(9-pin USB2_3_4)
(see p.6, No. 8)

There are two headers on this motherboard. Each USB 2.0 header can support two ports.

Front Panel Audio Header
(9-pin HD_AUDIO1)
(see p.6, No. 20)

This header is for connecting audio devices to the front audio panel.
1. High Definition Audio supports Jack Sensing, but the panel wire on the chassis must support HDA to function correctly. Please follow the instructions in our manual and chassis manual to install your system.

2. If you use an AC’97 audio panel, please install it to the front panel audio header by the steps below:
 A. Connect Mic_IN (MIC) to MIC2_L.
 B. Connect Audio_R (RIN) to OUT2_R and Audio_L (LIN) to OUT2_L.
 C. Connect Ground (GND) to Ground (GND).
 D. MIC_RET and OUT_RET are for the HD audio panel only. You don’t need to connect them for the AC’97 audio panel.
 E. To activate the front mic, go to the “FrontMic” Tab in the Realtek Control panel and adjust "Recording Volume".

CPU Fan Connectors
(4-pin CPU_FAN1)
(see p.6, No. 15)

CPU Fan Connectors
(4-pin CPU_FAN2)
(see p.6, No. 17)

This motherboard provides two 4-Pin CPU fan (Quiet Fan) connectors. If you plan to connect a 3-Pin CPU fan, please connect it to Pin 1-3.

ATX 19V Power Connector
(4-pin ATX_PWR1)
(see p.6, No. 1)

Please connect an ATX 19V power supply to this connector.
*The power supply plug fits into this connector in only one orientation.

FPD Brightness Header
(8-pin BLT_VOL1)
(see p.6, No. 9)

1: BKL_T_PWR
2: BKL_T_PWR
3: BKL_T_EN
4: BKL_T_PWM
5: GND
6: GND
7: Brightness_Up
8: Brightness_Down
LVDS Panel Connector
(30-pin LVDS1)
(see p.6, No. 13)

<table>
<thead>
<tr>
<th>PIN</th>
<th>Signal Name</th>
<th>PIN</th>
<th>Signal Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>LCD_VDD</td>
<td>16</td>
<td>CLK1P</td>
</tr>
<tr>
<td>2</td>
<td>LCD_VDD</td>
<td>17</td>
<td>A3N</td>
</tr>
<tr>
<td>3</td>
<td>LCD_VDD</td>
<td>18</td>
<td>A3P</td>
</tr>
<tr>
<td>4</td>
<td>GND</td>
<td>19</td>
<td>A4N</td>
</tr>
<tr>
<td>5</td>
<td>N/A</td>
<td>20</td>
<td>A4P</td>
</tr>
<tr>
<td>6</td>
<td>GND</td>
<td>21</td>
<td>A5N</td>
</tr>
<tr>
<td>7</td>
<td>A0N</td>
<td>22</td>
<td>A5P</td>
</tr>
<tr>
<td>8</td>
<td>A0P</td>
<td>23</td>
<td>A6N</td>
</tr>
<tr>
<td>9</td>
<td>A1N</td>
<td>24</td>
<td>A6P</td>
</tr>
<tr>
<td>10</td>
<td>A1P</td>
<td>25</td>
<td>GND</td>
</tr>
<tr>
<td>11</td>
<td>A2N</td>
<td>26</td>
<td>GND</td>
</tr>
<tr>
<td>12</td>
<td>A2P</td>
<td>27</td>
<td>CLK2N</td>
</tr>
<tr>
<td>13</td>
<td>GND</td>
<td>28</td>
<td>CLK2P</td>
</tr>
<tr>
<td>14</td>
<td>GND</td>
<td>29</td>
<td>A7N</td>
</tr>
<tr>
<td>15</td>
<td>CLK1N</td>
<td>30</td>
<td>A7P</td>
</tr>
</tbody>
</table>

Chassis Intrusion Header
(2-pin CI1)
(see p.6, No. 16)

This motherboard supports CASE OPEN detection feature that detects if the chassis cover has been removed. This feature requires a chassis with chassis intrusion detection design.

Thermal Sensor Header
(2-pin TH1)
(see p.6, No. 21)

Connect a 2-pin thermistor cable to this header to use an external thermal sensor with the motherboard.

Panel Off Header
(2-pin PNL_SW1)
(see p.6, No. 12)

This header can be used to connect a switch that turns on/off the LVDS panel display’s backlight.
2.6 M.2 WiFi/BT Module Installation Guide

The M.2, also known as the Next Generation Form Factor (NGFF), is a small size and versatile card edge connector that aims to replace mPCIe and mSATA. The M.2 Socket (Key E) supports type 2230 WiFi/BT module.

Installing the WiFi/BT module

Step 1
Prepare a type 2230 WiFi/BT module and the screw.

Step 2
Find the nut location to be used.

Step 3
Gently insert the WiFi/BT module into the M.2 slot. Please be aware that the module only fits in one orientation.
Step 4

Tighten the screw with a screwdriver to secure the module into place. Please do not overtighten the screw as this might damage the module.
2.7 M.2_SSD (NGFF) Module Installation Guide

The M.2, also known as the Next Generation Form Factor (NGFF), is a small size and versatile card edge connector that aims to replace mPCIe and mSATA. The Ultra M.2 Socket supports M Key type 2260/2280 M.2 SATA3 6.0 Gb/s module and M.2 PCI Express module up to Gen3 x4 (32 Gb/s).

Installing the M.2_SSD (NGFF) Module

Step 1
Prepare a M.2_SSD (NGFF) module and the screw.

Step 2
Depending on the PCB type and length of your M.2_SSD (NGFF) module, find the corresponding nut location to be used.

Step 3
Remove the screw on the standoff and keep this screw for later use.

<table>
<thead>
<tr>
<th>No.</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nut Location</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>PCB Length</td>
<td>6cm</td>
<td>8cm</td>
</tr>
<tr>
<td>Module Type</td>
<td>Type 2260</td>
<td>Type 2280</td>
</tr>
</tbody>
</table>
Step 4

Move the standoff based on the module type and length. The standoff is placed at the nut location A by default. Skip Step 4 and 5 and go straight to Step 6 if you are going to use the default nut. Otherwise, release the standoff by hand.

Step 5

Peel off the yellow protective film on the nut to be used. Hand tighten the standoff into the desired nut location on the motherboard.

Step 6

Align and gently insert the M.2 (NGFF) SSD module into the M.2 slot. Please be aware that the M.2 (NGFF) SSD module only fits in one orientation.

Step 7

Tighten the screw with a screwdriver to secure the module into place. Please do not overtighten the screw as this might damage the module.
M.2_SSD (NGFF) Module Support List

M2_SATA:

<table>
<thead>
<tr>
<th>Vendor</th>
<th>Capacity</th>
<th>P/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADATA</td>
<td>512GB</td>
<td>ADATA ASU800NS38-512GT-C</td>
</tr>
<tr>
<td>Crucial</td>
<td>240GB</td>
<td>Crucial-CT240M500SSD4-240GB</td>
</tr>
<tr>
<td>Crucial</td>
<td>250GB</td>
<td>Crucial-CT250MX500SSD4-250G</td>
</tr>
<tr>
<td>ezlink</td>
<td>120GB</td>
<td>ezlink P51B-80-120GB</td>
</tr>
<tr>
<td>LITEON</td>
<td>256GB</td>
<td>LITEON LJH-256V2G-256GB (2260)</td>
</tr>
<tr>
<td>SanDisk</td>
<td>128GB</td>
<td>SanDisk X400-SD8SN8U-128G</td>
</tr>
<tr>
<td>SanDisk</td>
<td>128GB</td>
<td>SanDisk Z400s-SD8SNAT-128G-1122</td>
</tr>
<tr>
<td>Transcend</td>
<td>64GB</td>
<td>Transcend TS64GMTS400-64GB (2242)</td>
</tr>
<tr>
<td>Transcend</td>
<td>256GB</td>
<td>Transcend TS256GMTS800-256GB</td>
</tr>
<tr>
<td>PLEXTOR</td>
<td>128GB</td>
<td>PLEXTOR PX-128M6G-2260-128GB (2260)</td>
</tr>
<tr>
<td>INTEL</td>
<td>240GB</td>
<td>INTEL-SSDSCKJF240A5-QS63-MLC-240G</td>
</tr>
<tr>
<td>INTEL</td>
<td>240GB</td>
<td>INTEL-540SSERIES-SSDSCKKW240H6-240G</td>
</tr>
<tr>
<td>V-Color-</td>
<td>240GB</td>
<td>V-Color-240G</td>
</tr>
<tr>
<td>WD</td>
<td>1TB</td>
<td>WD BLUE WDS100T1B0B-00AS40-1TB</td>
</tr>
<tr>
<td>WD</td>
<td>240GB</td>
<td>WD GREEN WDS240G1G0B-00RC30-240GB</td>
</tr>
<tr>
<td>WD</td>
<td>500GB</td>
<td>WD BLUE 3D NAND WDS500G2B0B-00YS70-500G</td>
</tr>
</tbody>
</table>

M2_PCIE:

<table>
<thead>
<tr>
<th>Vendor</th>
<th>Capacity</th>
<th>P/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADATA</td>
<td>512GB</td>
<td>ADATA ASX8200 Pro-256G</td>
</tr>
<tr>
<td>ADATA</td>
<td>512GB</td>
<td>ADATA SX8200 PRO-512GB (ASX8200PNP)</td>
</tr>
<tr>
<td>ADATA</td>
<td>512GB</td>
<td>ADATA ASX7000NPC-512GT-C (XPG SX7000)</td>
</tr>
<tr>
<td>Apacer</td>
<td>240GB</td>
<td>Apacer AP240GZ280-240G</td>
</tr>
<tr>
<td>Crucial</td>
<td>1TB</td>
<td>CRUCIAL P1-1T</td>
</tr>
<tr>
<td>Crucial</td>
<td>500GB</td>
<td>CRUCIAL P1-500G</td>
</tr>
<tr>
<td>INTEL</td>
<td>16GB</td>
<td>Intel Optane Memory 16GB (MEMPEK1W016GA)(NVMe)</td>
</tr>
<tr>
<td>INTEL</td>
<td>32GB</td>
<td>Intel Optane Memory 32GB (MEMPEK1J032GA)(NVMe)</td>
</tr>
<tr>
<td>INTEL</td>
<td>256GB</td>
<td>INTEL 760P-SSDPEKKW256G8-256GB</td>
</tr>
<tr>
<td>INTEL</td>
<td>128GB</td>
<td>INTEL 600P-SSDPEKKW128G7-128GB</td>
</tr>
<tr>
<td>INTEL</td>
<td>512GB</td>
<td>INTEL 660P SERIES-SSDPEKNW512G8-512G</td>
</tr>
<tr>
<td>INTEL</td>
<td>512GB</td>
<td>INTEL 6000P-SSDPEKKF512G7-512GB</td>
</tr>
<tr>
<td>KINGS-</td>
<td>240GB</td>
<td>KINGSTON A1000-SA1000M8/240G (Gen3 x2)</td>
</tr>
<tr>
<td>TON</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KINGS-</td>
<td>480GB</td>
<td>KINGSTON KC1000 SKC1000/480G</td>
</tr>
<tr>
<td>TON</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PLEXTOR</td>
<td>256GB</td>
<td>PLEXTOR PX-256M8eGN-256GB</td>
</tr>
<tr>
<td>PLEXTOR</td>
<td>256GB</td>
<td>PLEXTOR PX-256M8PeG-256GB</td>
</tr>
<tr>
<td>PLEXTOR</td>
<td>512GB</td>
<td>PLEXTOR M9PEG-PX-512M9PEGN-512G</td>
</tr>
<tr>
<td>PATRIOT</td>
<td>240GB</td>
<td>PATRIOT Hellfire M2 (240G)</td>
</tr>
<tr>
<td>Samsung</td>
<td>512GB</td>
<td>Samsung 950PRO-MZVVK512-512GB</td>
</tr>
</tbody>
</table>
2.5" HDD:

<table>
<thead>
<tr>
<th>Vendor</th>
<th>Capacity</th>
<th>P/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOSHIBA</td>
<td>1TB</td>
<td>TOSHIBA-MQ02ABD100H-MLC-NAND8G+HDIT-1T</td>
</tr>
<tr>
<td>SEAGATE</td>
<td>500GB</td>
<td>SEAGATE-ST500LM021-3Y/P-500G</td>
</tr>
<tr>
<td>SEAGATE</td>
<td>1TB</td>
<td>SEAGATE-FIRECUDA-LX015-ST1000LX015-5Y/P-7mm-1T-W/8G</td>
</tr>
<tr>
<td>WD</td>
<td>750GB</td>
<td>WD-BLACK-WD7500BPKX-750G</td>
</tr>
<tr>
<td>WD</td>
<td>1TB</td>
<td>WD-RED-WD10JFCX-INTELLIPOWER-1T</td>
</tr>
<tr>
<td>WD</td>
<td>1TB</td>
<td>WD-BLUE-WD10SPZX-00Z10T0-1T-3Y-02</td>
</tr>
<tr>
<td>HGST</td>
<td>1TB</td>
<td>HGST-HTS721010A9E630-1TB</td>
</tr>
</tbody>
</table>

2.5" SSD:

<table>
<thead>
<tr>
<th>Vendor</th>
<th>Capacity</th>
<th>P/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>KINGSTON</td>
<td>120GB</td>
<td>KINGSTON-V300-SV300S37A-120G</td>
</tr>
<tr>
<td>KINGSTON</td>
<td>120GB</td>
<td>KINGSTON-HYPERX-FURY-RGB-SHFR200/240G-240G-W/RGB CABLEx1</td>
</tr>
<tr>
<td>KINGSTON</td>
<td>240GB</td>
<td>KINGSTON-HYPERX-SAVAGE-SHSS37A/240G</td>
</tr>
<tr>
<td>TOSHIBA</td>
<td>128GB</td>
<td>TOSHIBA-Q300 PRO-HDTS412AZSTA-128G</td>
</tr>
<tr>
<td>TOSHIBA</td>
<td>120GB</td>
<td>TOSHIBA-Q300-HDTS712AZSTA-120G</td>
</tr>
<tr>
<td>WYVO</td>
<td>240GB</td>
<td>WYVO-APS1-SSB240GTLC4-SA-AF-240G</td>
</tr>
<tr>
<td>ADATA</td>
<td>120GB</td>
<td>ADATA-GAMING-XPG-SX930-ASX930S3-120GM-C-120G</td>
</tr>
<tr>
<td>ADATA</td>
<td>256GB</td>
<td>ADATA-ULTIMATE-SU900-ASU900SS-256GM-C-256G</td>
</tr>
<tr>
<td>APACER</td>
<td>120GB</td>
<td>APACER-PANTHER-AS350-AP120GAS350-1-120G</td>
</tr>
<tr>
<td>TRANSCEND</td>
<td>128GB</td>
<td>TRANSCEND-SSD340K-TS128GSSD340K-128G</td>
</tr>
<tr>
<td>TRANSCEND</td>
<td>128GB</td>
<td>TRANSCEND-SSD370S-TS128GSSD370S-128G</td>
</tr>
<tr>
<td>INTEL</td>
<td>240GB</td>
<td>INTEL-730SERIES-SSDSC2BP240G4R5-240GB</td>
</tr>
<tr>
<td>Vendor</td>
<td>Capacity</td>
<td>P/N</td>
</tr>
<tr>
<td>--------------</td>
<td>----------</td>
<td>---</td>
</tr>
<tr>
<td>INTEL</td>
<td>128GB</td>
<td>545S SERIES-SSDSC2KW128G8X1-128G</td>
</tr>
<tr>
<td>SANDISK</td>
<td>128GB</td>
<td>SANDISK-X300-SD7SB6S-128G</td>
</tr>
<tr>
<td>SANDISK</td>
<td>240GB</td>
<td>SANDISK-EXTREME PRO-SDSSDXPS-240G</td>
</tr>
<tr>
<td>PLEXTOR</td>
<td>256GB</td>
<td>PLEXTOR-M6V-px-256M6V-256G</td>
</tr>
<tr>
<td>PLEXTOR</td>
<td>256GB</td>
<td>PLEXTOR-M6 PRO-PX-256M6PRO-256G</td>
</tr>
<tr>
<td>CRUCIAL</td>
<td>250GB</td>
<td>CRUCIAL-MX500-CT250MX500SSD1-250G-5Y</td>
</tr>
<tr>
<td>CRUCIAL</td>
<td>120GB</td>
<td>CRUCIAL-BX500-CT120BX500SSD1-120G-3Y</td>
</tr>
<tr>
<td>OCZ</td>
<td>120GB</td>
<td>OCZ-VECTOR180-VTR180-25SAT3-120G-120G</td>
</tr>
<tr>
<td>OCZ</td>
<td>120GB</td>
<td>OCZ-TRION100-TRN100-25SAT3-120G</td>
</tr>
<tr>
<td>WD</td>
<td>120GB</td>
<td>WD-GREEN-WDS120G2G0A-00JH30-120G-3Y</td>
</tr>
<tr>
<td>WD</td>
<td>250GB</td>
<td>WD-BLUE-WDS250G2B0A-00SM50-250G-5Y</td>
</tr>
<tr>
<td>UMAX</td>
<td>240GB</td>
<td>UMAX-S330-HDUM330SSD240G-240G-3Y</td>
</tr>
<tr>
<td>PIONEER</td>
<td>120GB</td>
<td>PIONEER-APS-SL3N-APS-SL3N-120-120G-3Y</td>
</tr>
<tr>
<td>ANACONDA</td>
<td>240GB</td>
<td>ANACONDA-TS SERIES-TS240201803718-240G-3Y</td>
</tr>
<tr>
<td>KLEVV</td>
<td>240GB</td>
<td>KLEVV-NEO-N500-D240GAA-N500-240G-3Y</td>
</tr>
<tr>
<td>TCELL</td>
<td>240GB</td>
<td>TCELL-TT650-240G-3Y</td>
</tr>
<tr>
<td>Liteon</td>
<td>240GB</td>
<td>LITE-ON-MU3-PH6-PH6-CE240-L2-240G-3Y</td>
</tr>
<tr>
<td>V-Color</td>
<td>240GB</td>
<td>V-COLOR-VSS100-VSS100-240G-FO-240G-3Y</td>
</tr>
<tr>
<td>HIKVISION</td>
<td>480GB</td>
<td>HIKVISION-C100-HS-SSD-C100-480G-3Y</td>
</tr>
<tr>
<td>SAMSUNG</td>
<td>250GB</td>
<td>SAMSUNG-860EVO-MZ-76E250BW-MZ7LH-250HAHQ-250G</td>
</tr>
<tr>
<td>TEAM</td>
<td>250GB</td>
<td>TEAM GROUP-T-FORCE-Delta RGB-T253TR250G3C313-5V-250G-3Y</td>
</tr>
</tbody>
</table>
Chapter 3 Software and Utilities Operation

3.1 Installing Drivers

The Support CD that comes with the motherboard contains necessary drivers and useful utilities that enhance the motherboard’s features.

Running The Support CD

To begin using the support CD, insert the CD into your CD-ROM drive. The CD automatically displays the Main Menu if “AUTORUN” is enabled in your computer. If the Main Menu does not appear automatically, locate and double click on the file “ASRSETUP.EXE” in the Support CD to display the menu.

Drivers Menu

The drivers compatible to your system will be auto-detected and listed on the support CD driver page. Please click Install All or follow the order from top to bottom to install those required drivers. Therefore, the drivers you install can work properly.

Utilities Menu

The Utilities Menu shows the application software that the motherboard supports. Click on a specific item then follow the installation wizard to install it.
Chapter 4 UEFI SETUP UTILITY

4.1 Introduction

This section explains how to use the UEFI SETUP UTILITY to configure your system. You may run the UEFI SETUP UTILITY by pressing <F2> or right after you power on the computer, otherwise, the Power-On-Self-Test (POST) will continue with its test routines. If you wish to enter the UEFI SETUP UTILITY after POST, restart the system by pressing <Ctl> + <Alt> + <Delete>, or by pressing the reset button on the system chassis. You may also restart by turning the system off and then back on.

Because the UEFI software is constantly being updated, the following UEFI setup screens and descriptions are for reference purpose only, and they may not exactly match what you see on your screen.
4.2 EZ Mode

The EZ Mode screen appears when you enter the BIOS setup program by default. EZ mode is a dashboard which contains multiple readings of the system’s current status. You can check the most crucial information of your system, such as CPU speed, DRAM frequency, SATA information, fan speed, etc.

Press <F6> or click the "Advanced Mode" button at the upper right corner of the screen to switch to "Advanced Mode" for more options.

<table>
<thead>
<tr>
<th>No.</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Help</td>
</tr>
<tr>
<td>2</td>
<td>Load UEFI Defaults</td>
</tr>
<tr>
<td>3</td>
<td>Save Changes and Exit</td>
</tr>
<tr>
<td>4</td>
<td>Discard Changes</td>
</tr>
<tr>
<td>5</td>
<td>Change Language</td>
</tr>
<tr>
<td>6</td>
<td>Switch to Advanced Mode</td>
</tr>
</tbody>
</table>
4.3 Advanced Mode

The Advanced Mode provides more options to configure the BIOS settings. Refer to the following sections for the detailed configurations.

To access the EZ Mode, press <F6> or click the "EZ Mode" button at the upper right corner of the screen.

4.3.1 UEFI Menu Bar

The top of the screen has a menu bar with the following selections:

<table>
<thead>
<tr>
<th>Menu</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main</td>
<td>For setting system time/date information</td>
</tr>
<tr>
<td>OC Tweaker</td>
<td>For overclocking configurations</td>
</tr>
<tr>
<td>Advanced</td>
<td>For advanced system configurations</td>
</tr>
<tr>
<td>Tool</td>
<td>Useful tools</td>
</tr>
<tr>
<td>H/W Monitor</td>
<td>Displays current hardware status</td>
</tr>
<tr>
<td>Security</td>
<td>For security settings</td>
</tr>
<tr>
<td>Boot</td>
<td>For configuring boot settings and boot priority</td>
</tr>
<tr>
<td>Exit</td>
<td>Exit the current screen or the UEFI Setup Utility</td>
</tr>
</tbody>
</table>
4.3.2 Navigation Keys

Use <←→> key or <↑→> key to choose among the selections on the menu bar, and use <↑↓> key or <←→> key to move the cursor up or down to select items, then press <Enter> to get into the sub screen. You can also use the mouse to click your required item.

Please check the following table for the descriptions of each navigation key.

<table>
<thead>
<tr>
<th>Navigation Key(s)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ / -</td>
<td>To change option for the selected items</td>
</tr>
<tr>
<td><Tab></td>
<td>Switch to next function</td>
</tr>
<tr>
<td><PGUP></td>
<td>Go to the previous page</td>
</tr>
<tr>
<td><PGDN></td>
<td>Go to the next page</td>
</tr>
<tr>
<td><HOME></td>
<td>Go to the top of the screen</td>
</tr>
<tr>
<td><END></td>
<td>Go to the bottom of the screen</td>
</tr>
<tr>
<td><F1></td>
<td>To display the General Help Screen</td>
</tr>
<tr>
<td><F5></td>
<td>Add / Remove Favorite</td>
</tr>
<tr>
<td><F7></td>
<td>Discard changes and exit the SETUP UTILITY</td>
</tr>
<tr>
<td><F9></td>
<td>Load optimal default values for all the settings</td>
</tr>
<tr>
<td><F10></td>
<td>Save changes and exit the SETUP UTILITY</td>
</tr>
<tr>
<td><F12></td>
<td>Print screen</td>
</tr>
<tr>
<td><ESC></td>
<td>Jump to the Exit Screen or exit the current screen</td>
</tr>
</tbody>
</table>
4.4 Main Screen

When you enter the UEFI SETUP UTILITY, the Main screen will appear and display the system overview.

The availability and location of BIOS settings can be different for different models and BIOS versions.

My Favorite

Display your collection of BIOS items. Press F5 to add/remove your favorite items.
4.5 OC Tweaker Screen

In the OC Tweaker screen, you can set up overclocking features.

Because the UEFI software is constantly being updated, the following UEFI setup screens and descriptions are for reference purpose only, and they may not exactly match what you see on your screen.

CPU Configuration

AVX2 Ratio Offset
AVX Ratio Offset specifies a negative offset from the CPU Ratio for AVX workloads. AVX is a more stressful workload that lower the AVX ratio to ensure maximum possible ratio for SSE workloads.

BCLK Spread Spectrum
Enable BCLK Spread Spectrum to reduce electromagnetic interference for passing EMI tests. Disable to achieve higher clock speeds when overclocking.

BCLK Aware Adaptive Voltage
BCLK Aware Adaptive Voltage enable/disable. When enabled, pcode will be aware of the BCLK frequency when calculating the CPU V/F curves. This is ideal for BCLK OC to avoid high voltage overrides.
Boot Performance Mode
Select the performance state that the BIOS will set before OS handoff.

FCLK Frequency
Configure the FCLK Frequency.

Ring to Core Ratio Offset
Disable Ring to Core Ratio Offset so the ring and core can run at the same frequency.

Intel SpeedStep Technology
Intel SpeedStep technology allows processors to switch between multiple frequencies and voltage points for better power saving and heat dissipation.

Intel Turbo Boost Technology
Intel Turbo Boost Technology enables the processor to run above its base operating frequency when the operating system requests the highest performance state.

Intel Speed Shift Technology
Enable/Disable Intel Speed Shift Technology support. Enabling will expose the CPPC v2 interface to allow for hardware controlled P-states.

Intel Thermal Velocity Boost Voltage Optimizations
This service controls thermal based voltage optimizations for processors that implement the Intel Thermal Velocity Boost (TVB) feature.

Dual Tau Boost
Enable Dual Tau Boost feature. This is only applicable for CMLS 35W/65W/125W skus. This item is only supported with processors with Config TDP support.

Long Duration Power Limit
Configure Package Power Limit 1 in watts. When the limit is exceeded, the CPU ratio will be lowered after a period of time. A lower limit can protect the CPU and save power, while a higher limit may improve performance.

Long Duration Maintained
Configure the period of time until the CPU ratio is lowered when the Long Duration Power Limit is exceeded.
Short Duration Power Limit
Configure Package Power Limit 2 in watts. When the limit is exceeded, the CPU ratio will be lowered immediately. A lower limit can protect the CPU and save power, while a higher limit may improve performance.

CPU Core Current Limit
Configure the current limit of the CPU core. A lower limit can protect the CPU and save power, while a higher limit may improve performance.

GT Current Limit
Configure the current limit of the GT slice. A lower limit can protect the CPU and save power, while a higher limit may improve performance.

DRAM Configuration
Memory Information
Allows users to browse the serial presence detect (SPD) and Intel extreme memory profile (XMP) for DDR4 modules.

DRAM Timing Configuration
Load XMP Setting
Load XMP settings to overclock the memory and perform beyond standard specifications.

DRAM Frequency
If [Auto] is selected, the motherboard will detect the memory module(s) inserted and assign the appropriate frequency automatically.

Primary Timing
CAS# Latency (tCL)
The time between sending a column address to the memory and the beginning of the data in response.

RAS# to CAS# Delay and Row Precharge (tRCDtRP)
RAS# to CAS# Delay: The number of clock cycles required between the opening of a row of memory and accessing columns within it.
Row Precharge: The number of clock cycles required between the issuing of the precharge command and opening the next row.
RAS# Active Time (tRAS)
The number of clock cycles required between a bank active command and issuing the precharge command.

Command Rate (CR)
The delay between when a memory chip is selected and when the first active command can be issued.

Secondary Timing

Write Recovery Time (tWR)
The amount of delay that must elapse after the completion of a valid write operation, before an active bank can be precharged.

Refresh Cycle Time (tRFC)
The number of clocks from a Refresh command until the first Activate command to the same rank.

RAS to RAS Delay (tRRD_L)
The number of clocks between two rows activated in different banks of the same rank.

RAS to RAS Delay (tRRD_S)
The number of clocks between two rows activated in different banks of the same rank.

Write to Read Delay (tWTR_L)
The number of clocks between the last valid write operation and the next read command to the same internal bank.

Write to Read Delay (tWTR_S)
The number of clocks between the last valid write operation and the next read command to the same internal bank.

Read to Precharge (tRTP)
The number of clocks that are inserted between a read command to a row precharge command to the same rank.

Four Activate Window (tFAW)
The time window in which four activates are allowed the same rank.
CAS Write Latency (tCWL)
Configure CAS Write Latency.

Third Timing

tREFI
Configure refresh cycles at an average periodic interval.

tCKE
Configure the period of time the DDR4 initiates a minimum of one refresh command internally once it enters Self-Refresh mode.

Turn Around Timing

tRDRD_sg
Configure between module read to read delay.

tRDRD_dg
Configure between module read to read delay.

tRDRD_dr
Configure between module read to read delay.

tRDRD_dd
Configure between module read to read delay.

tRDWR_sg
Configure between module read to write delay.

tRDWR_dg
Configure between module read to write delay.

tRDWR_dr
Configure between module read to write delay.

tRDWR_dd
Configure between module read to write delay.

tWRRD_sg
Configure between module write to read delay.
tWRRD_dg
Configure between module write to read delay.

tWRRD_dr
Configure between module write to read delay.

tWRRD_dd
Configure between module write to read delay.

tWRWR_sg
Configure between module write to write delay.

tWRWR_dg
Configure between module write to write delay.

tWRWR_dr
Configure between module write to write delay.

tWRWR_dd
Configure between module write to write delay.

Round Trip Timing

RTL Init Value
Configure round trip latency init value for round trip latency training.

IO-L Init Value
Configure IO latency init value for IO latency training.

RTL (CH A)
Configure round trip latency for channel A.

RTL (CH B)
Configure round trip latency for channel B.

IO-L (CH A)
Configure IO latency for channel A.

IO-L (CH B)
Configure IO latency for channel B.
IO-L Offset (CH A)
Configure IO latency offset for channel A.

IO-L Offset (CH B)
Configure IO latency offset for channel B.

RFR Delay (CH A)
Configure RFR Delay for Channel A.

RFR Delay (CH B)
Configure RFR Delay for Channel B.

ODT Setting

ODT WR (A1)
Configure the memory on die termination resistors' WR for channel A.

ODT WR (B1)
Configure the memory on die termination resistors' WR for channel B.

ODT NOM (A1)
Use this to change ODT (CH A) Auto/Manual settings. The default is [Auto].

ODT NOM (B1)
Use this to change ODT (CH B) Auto/Manual settings. The default is [Auto].

ODT PARK (A1)
Configure the memory on die termination resistors' PARK for channel A.

ODT PARK (B1)
Configure the memory on die termination resistors' PARK for channel B.

Advanced Setting

ASRock Timing Optimization
Configure the fast path through the MRC.

Realtime Memory Timing
Configure the realtime memory timings.

[Enabled] The system will allow performing realtime memory timing changes after MRC_DONE.
Command Tristate
Configure the Command Tristate Support.

Exit On Failure
Configure the Exit On Failure for MRC training steps.

Reset On Training Fail
Reset system if the MRC training fails.

MRC Fast Boot
Enable Memory Fast Boot to skip DRAM memory training for booting faster.

Voltage Configuration

DRAM Voltage
Use this to configure DRAM Voltage. The default value is [Auto].

Adapter Watt Select
Select the adapter watt.

Performance Mode
Select the performance state that the BIOS will set before OS handoff.

Save User Default
Type a profile name and press enter to save your settings as user default.

Load User Default
Load previously saved user defaults.

Save User UEFI Setup Profile to Disk
It helps you to save current UEFI settings as an user profile to disk.

Load User UEFI Setup Profile from Disk
You can load previous saved profile from the disk.
4.6 Advanced Screen

In this section, you may set the configurations for the following items: CPU Configuration, Chipset Configuration, Storage Configuration, Super IO Configuration, ACPI Configuration, USB Configuration and Trusted Computing.

![UEFI Setup Interface](image)

- **Setting wrong values in this section may cause the system to malfunction.**

UEFI Configuration

UEFI Setup Style

Select the default mode when entering the UEFI setup utility.

Active Page on Entry

Select the default page when entering the UEFI setup utility.

Full HD UEFI

When [Auto] is selected, the resolution will be set to 1920 x 1080 if the monitor supports Full HD resolution. If the monitor does not support Full HD resolution, then the resolution will be set to 1024 x 768. When [Disable] is selected, the resolution will be set to 1024 x 768 directly.
4.6.1 CPU Configuration

Intel Hyper Threading Technology

Intel Hyper Threading Technology allows multiple threads to run on each core, so that the overall performance on threaded software is improved.

Active Processor Cores

Select the number of cores to enable in each processor package.

CPU C States Support

Enable CPU C States Support for power saving. It is recommended to keep C3, C6 and C7 all enabled for better power saving.

Enhanced Halt State (C1E)

Enable Enhanced Halt State (C1E) for lower power consumption.

CPU C3 State Support

Enable C3 deep sleep state for lower power consumption.

CPU C6 State Support

Enable C6 deep sleep state for lower power consumption.

CPU C7 State Support

Enable C7 deep sleep state for lower power consumption.
Package C State Support
Enable CPU, PCIe, Memory, Graphics C State Support for power saving.

CFG Lock
This item allows you to disable or enable the CFG Lock.

C6DRAM
Enable/Disable moving of DRAM contents to PRM memory when CPU is in C6 state.

CPU Thermal Throttling
Enable CPU internal thermal control mechanisms to keep the CPU from overheating.

Intel Virtualization Technology
Intel Virtualization Technology allows a platform to run multiple operating systems and applications in independent partitions, so that one computer system can function as multiple virtual systems.

Hardware Prefetcher
Automatically prefetch data and code for the processor. Enable for better performance.

Adjacent Cache Line Prefetch
Automatically prefetch the subsequent cache line while retrieving the currently requested cache line. Enable for better performance.

Software Guard Extensions (SGX)
Intel SGX is a set of new CPU instructions that can be used by applications to set aside private regions of code and data.
4.6.2 Chipset Configuration

VT-d
Intel® Virtualization Technology for Directed I/O helps your virtual machine monitor better utilize hardware by improving application compatibility and reliability, and providing additional levels of manageability, security, isolation, and I/O performance.

DMI Link Speed
Configure DMI Slot Link Speed. Auto mode is optimizing for overclocking.

PCIE1 Link Speed
Select the link speed for PCIE1.

PCI Express Native Control
Select Enable for enhanced PCI Express power saving in OS.

PCIE ASPM Support
This option enables/disables the ASPM support for all CPU downstream devices.

PCH PCIE ASPM Support
This option enables/disables the ASPM support for all PCH PCIE devices.

DMI ASPM Support
This option enables/disables the control of ASPM on CPU side of the DMI Link.
PCH DMI ASPM Support
This option enables/disables the ASPM support for all PCH DMI devices.

Share Memory
Configure the size of memory that is allocated to the integrated graphics processor when the system boots up.

Onboard LAN Controller
Enable or disable the onboard network interface controller.

Onboard HD Audio
Enable/disable onboard HD audio. Set to Auto to enable onboard HD audio and automatically disable it when a sound card is installed.

Front Panel
Enable/disable front panel HD audio.

Onboard HDMI HD Audio
Enable audio for the onboard digital outputs.

Onboard WAN Device
Use this item to enable or disable the onboard WAN device.

WAN Radio
Enable/disable the WiFi module's connectivity.

BT Control
Enable/disable the Bluetooth connectivity.

Deep Sleep
Configure deep sleep mode for power saving when the computer is shut down.

Restore on AC/Power Loss
Select the power state after a power failure. If [Power Off] is selected, the power will remain off when the power recovers. If [Power On] is selected, the system will start to boot up when the power recovers.

Serial Port/UART Switch
Select Serial Port or UART for Port 80 debug.
4.6.3 Storage Configuration

SATA Controller(s)
Enable/disable the SATA controllers.

SATA Aggressive Link Power Management
SATA Aggressive Link Power Management allows SATA devices to enter a low power state during periods of inactivity to save power. It is only supported by AHCI mode.

Hard Disk S.M.A.R.T.
S.M.A.R.T stands for Self-Monitoring, Analysis, and Reporting Technology. It is a monitoring system for computer hard disk drives to detect and report on various indicators of reliability.
4.6.4 Super IO Configuration

Serial Port

Enable or disable the Serial port.

Serial Port Address

Select the address of the Serial port.
4.6.5 ACPI Configuration

Suspend to RAM
Select disable for ACPI suspend type S1. It is recommended to select auto for ACPI S3 power saving.

Onboard LAN Power On
Allow the system to be waked up by onboard LAN.

Ring-In Power On
Allow the system to be waked up by onboard COM port modem Ring-In signals.

RTC Alarm Power On
Allow the system to be waked up by the real time clock alarm. Set it to By OS to let it be handled by your operating system.

USB Keyboard/Remote Power On
Allow the system to be waked up by an USB keyboard or remote controller.

USB Mouse Power On
Allow the system to be waked up by an USB mouse.
4.6.6 USB Configuration

Legacy USB Support
Enable or disable Legacy OS Support for USB 2.0 devices. If you encounter USB compatibility issues it is recommended to disable legacy USB support. Select UEFI Setup Only to support USB devices under the UEFI setup and Windows/Linux operating systems only.

XHCI Hand-off
This is a workaround for OSes without XHCI hand-off support. The XHCI ownership change should be claimed by XHCI driver.
4.6.7 Trusted Computing

NOTE: Options vary depending on the version of your connected TPM module.

Security Device Support
Use this item to enable or disable BIOS support for security device. O.S. will not show Security Device. TCG EFI protocol and INT1A interface will not be available.

SHA-1 PCR Bank
Use this item to enable or disable SHA-1 PCR Bank.

SHA256 PCR Bank
Use this item to enable or disable SHA256 PCR Bank.

Pending Operation
Schedule an Operation for the Security Device.
NOTE: Your computer will reboot during restart in order to change State of the Device.

Platform Hierarchy
Use this item to enable or disable Platform Hierarchy.

Storage Hierarchy
Use this item to enable or disable Storage Hierarchy.

Endorsement Hierarchy
Use this item to enable or disable Endorsement Hierarchy.
TPM2.0 UEFI Spec Version
Use this item to select the TCG2 spec. version supported.
The optional settings: [TCG_1_2]; [TCG_2].

[TCG_1_2]: compatible mode for Win8/Win10.
[TCG_2]: for TCG2 newer spec. compatible mode for Win10

Physical Presence Spec version
Select this item to tell OS to support PPI spec version 1.2 or 1.3. Please note that some HCK tests might not support version 1.3.

Device Select
Use this item to select the TPM device to be supported. TPM 1.2 will restrict support to TPM 1.2 devices. TPM 2.0 will restrict support to TPM 2.0 devices. Auto will support both with the default set to TPM 2.0 devices. If TPM 2.0 devices are not found, TPM 1.2 devices will be enumerated.
4.7 Tools

SSD Secure Erase Tool
All the SSD’s listed that supports Secure Erase function.

NVME Sanitization Tool
After you Sanitize SSD, all user data will be permanently destroyed on the SSD and cannot be recovered.

Instant Flash
Save UEFI files in your USB storage device and run Instant Flash to update your UEFI.

Internet Flash - DHCP (Auto IP), Auto
ASRock Internet Flash downloads and updates the latest UEFI firmware version from our servers for you. Please setup network configuration before using Internet Flash.
*For BIOS backup and recovery purpose, it is recommended to plug in your USB pen drive before using this function.
Network Configuration

Use this to configure internet connection settings for Internet Flash.

Internet Setting

Enable or disable sound effects in the setup utility.

UEFI Download Server

Select a server to download the UEFI firmware.
4.8 Hardware Health Event Monitoring Screen

This section allows you to monitor the status of the hardware on your system, including the parameters of the CPU temperature, motherboard temperature, fan speed and voltage.

![Hardware Health Event Monitoring Screen](image)

Fan Tuning

Measure Fan Min Duty Cycle.

Fan-Tastic Tuning

Select a fan mode for CPU Fan, or choose Customize to set 5 CPU temperatures and assign a respective fan speed for each temperature.

CPU Fan 1 Setting

Select a fan mode for CPU Fan 1, or choose Customize to set 5 CPU temperatures and assign a respective fan speed for each temperature.

CPU Fan 1 Step Up

Set the value of CPU Fan 1 Step Up.

CPU Fan 1 Step Down

Set the value of CPU Fan 1 Step Down.
CPU Fan 2 Setting
Select a fan mode for CPU Fan 2, or choose Customize to set 5 CPU temperatures and assign a respective fan speed for each temperature.

CPU Fan 2 Step Up
Set the value of CPU Fan 2 Step Up.

CPU Fan 2 Step Down
Set the value of CPU Fan 2 Step Down.

Case Open Feature
Enable or disable Case Open Feature to detect whether the chassis cover has been removed.
4.9 Security Screen

In this section you may set or change the supervisor/user password for the system. You may also clear the user password.

Supervisor Password
Set or change the password for the administrator account. Only the administrator has authority to change the settings in the UEFI Setup Utility. Leave it blank and press enter to remove the password.

User Password
Set or change the password for the user account. Users are unable to change the settings in the UEFI Setup Utility. Leave it blank and press enter to remove the password.

Secure Boot
Use this item to enable or disable support for Secure Boot.

Intel(R) Platform Trust Technology
Enable/disable Intel PTT in ME. Disable this option to use discrete TPM Module.
4.10 Boot Screen

This section displays the available devices on your system for you to configure the boot settings and the boot priority.

Fast Boot

Fast Boot minimizes your computer’s boot time. In fast mode you may not boot from an USB storage device. The VBIOS must support UEFI GOP if you are using an external graphics card. Please notice that Ultra Fast mode will boot so fast that the only way to enter this UEFI Setup Utility is to Clear CMOS or run the Restart to UEFI utility in Windows.

Boot From Onboard LAN

Allow the system to be waked up by the onboard LAN.

Setup Prompt Timeout

Configure the number of seconds to wait for the setup hot key.

Bootup Num-Lock

Select whether Num Lock should be turned on or off when the system boots up.

Boot Beep

Select whether the Boot Beep should be turned on or off when the system boots up. Please note that a buzzer is needed.
Full Screen Logo
Enable to display the boot logo or disable to show normal POST messages.

Boot Failure Guard Message
If the computer fails to boot for a number of times the system automatically restores the default settings.
4.11 Exit Screen

Save Changes and Exit
When you select this option the following message, “Save configuration changes and exit setup?” will pop out. Select [OK] to save changes and exit the UEFI SETUP UTILITY.

Discard Changes and Exit
When you select this option the following message, “Discard changes and exit setup?” will pop out. Select [OK] to exit the UEFI SETUP UTILITY without saving any changes.

Discard Changes
When you select this option the following message, “Discard changes?” will pop out. Select [OK] to discard all changes.

Load UEFI Defaults
Load UEFI default values for all options. The F9 key can be used for this operation.

Launch EFI Shell from filesystem device
Copy shellx64.efi to the root directory to launch EFI Shell.
DECLARATION OF CONFORMITY
Per FCC Part 2 Section 2.1077(a)

Responsible Party Name: ASRock Incorporation
Address: 13848 Magnolia Ave, Chino, CA 91710
Phone/Fax No: +1-909-590-8308/+1-909-590-1026

hereby declares that the product
Product Name : Motherboard
Model Number : H410TM-ITX
Conforms to the following specifications:

☑ FCC Part 15, Subpart B, Unintentional Radiators

Supplementary Information:

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.
EU Declaration of Conformity

For the following equipment:

Motherboard
(Product Name)

H410TM-ITX
(Model Designation / Trade Name)

- **EMC — Directive 2014/30/EU (from April 20th, 2016)**
 - EN 55022:2010/AC:2011 Class B
 - EN 55032:2012+AC:2013 Class B
 - EN 61000-3-2:2014

- **LVD — Directive 2014/35/EU (from April 20th, 2016)**
 - EN 60950-1 : 2011+ A2: 2013
 - EN 60950-1 : 2006/A12: 2011

- **RoHS — Directive 2011/65/EU**
- **CE marking**

(EU conformity marking)