This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions:

(1) this device may not cause harmful interference, and
(2) this device must accept any interference received, including interference that may cause undesired operation.

CALIFORNIA, USA ONLY

The Lithium battery adopted on this motherboard contains Perchlorate, a toxic substance controlled in Perchlorate Best Management Practices (BMP) regulations passed by the California Legislature. When you discard the Lithium battery in California, USA, please follow the related regulations in advance.

"Perchlorate Material-special handling may apply, see www.dtsc.ca.gov/hazardouswaste/perchlorate"
AUSTRALIA ONLY

Our goods come with guarantees that cannot be excluded under the Australian Consumer Law. You are entitled to a replacement or refund for a major failure and compensation for any other reasonably foreseeable loss or damage caused by our goods. You are also entitled to have the goods repaired or replaced if the goods fail to be of acceptable quality and the failure does not amount to a major failure.

The terms HDMI™ and HDMI High-Definition Multimedia Interface, and the HDMI logo are trademarks or registered trademarks of HDMI Licensing LLC in the United States and other countries.
Contents

Chapter 1 Introduction 1
1.1 Package Contents 1
1.2 Specifications 2
1.3 Motherboard Layout 6
1.4 Front Panel 9
1.5 Rear Panel 10

Chapter 2 Installation 11
2.1 Installing the CPU 12
2.2 Installing the CPU Fan and Heatsink 15
2.3 Installing Memory Modules (SO-DIMM) 16
2.4 Onboard Headers and Connectors 18
2.5 M.2 WiFi/BT Module and Intel® CNVi (Integrated WiFi/BT) Installation Guide 21
2.6 M.2_SSD (NGFF) Module Installation Guide 23
2.7 SD Card Installation Guide 25

Chapter 3 Software and Utilities Operation 26

Chapter 4 UEFI SETUP UTILITY 27
4.1 Introduction 27
4.2 EZ Mode 28
4.3 Advanced Mode 30
4.3.1 UEFI Menu Bar 30
4.3.2 Navigation Keys 31
4.4 Main Screen 32
4.5 OC Tweaker Screen 33
4.6 Advanced Screen 41
4.6.1 CPU Configuration 42
4.6.2 Chipset Configuration 44
4.6.3 Storage Configuration 46
4.6.4 Super IO Configuration 47
4.6.5 ACPI Configuration 48
4.6.6 USB Configuration 49
4.7 Tools 50
4.8 Hardware Health Event Monitoring Screen 53
4.9 Security Screen 54
4.10 Boot Screen 55
4.11 Exit Screen 58
Chapter 1 Introduction

Thank you for purchasing H310M-STX / H310M-STX/COM motherboard. In this documentation, Chapter 1 and 2 contains the introduction of the motherboard and step-by-step installation guides. Chapter 3 contains the operation guide of the software and utilities. Chapter 4 contains the configuration guide of the BIOS setup.

1.1 Package Contents

- H310M-STX / H310M-STX/COM Motherboard (Mini-STX Form Factor)
- H310M-STX / H310M-STX/COM Quick Installation Guide
- H310M-STX / H310M-STX/COM Support CD
- 1 x I/O Panel Shield
- 2 x Serial ATA(SATA) Data with Power Cable (Optional)
- 1 x Screw for M.2 Socket (M2*2) (Optional)
- 1 x Screw for WiFi Module (M2*2) (Optional)

Because the motherboard specifications and the BIOS software might be updated, the content of this documentation will be subject to change without notice.
1.2 Specifications

Platform
- Mini-STX Form Factor

CPU
- Supports 9th and 8th Gen Intel® Core™ Processors (Socket 1151)
- Supports CPU up to 65W
- 5 Power Phase design
- Supports Intel® Turbo Boost 2.0 Technology

Chipset
- Intel® H310

Memory
- Dual Channel DDR4 Memory Technology
- 2 x DDR4 SO-DIMM Slots
- Supports DDR4 2666/2400/2133 non-ECC, un-buffered memory
- Max. capacity of system memory: 32GB
- Supports Intel® Extreme Memory Profile (XMP) 2.0
- 15μ Gold Contact in DIMM Slots

Expansion Slot
- 1 x M.2 Socket (Key E), supports type 2230 WiFi/BT module and Intel® CNVi (Integrated WiFi/BT)

Graphics
- Intel® UHD Graphics Built-in Visuals and the VGA outputs can be supported only with processors which are GPU integrated.
- Supports Intel® UHD Graphics Built-in Visuals: Intel® Quick Sync Video with AVC, MVC (S3D) and MPEG-2 Full HW Encode1,
- Intel® InTru™ 3D, Intel® Clear Video HD Technology, Intel® Insider™, Intel® UHD Graphics
- DirectX 12
- HWA Encode/Decode: AVC/H.264, HEVC/H.265 8-bit, HEVC/H.265 10-bit, VP8, VP9 8-bit, VP9 10-bit (Decode only), MPEG2, MJPEG, VC-1 (Decode only)
• Max. shared memory 1024MB
 * The size of maximum shared memory may vary from different operating systems.
• Three graphics output options: D-Sub, HDMI and DisplayPort 1.2
 * Supports up to 2 displays simultaneously
• Supports HDMI with max. resolution up to 4K x 2K (4096x2160) @ 30Hz
• Supports D-Sub with max. resolution up to 1920x1200 @ 60Hz
• Supports DisplayPort 1.2 with max. resolution up to 4K x 2K (4096x2304) @ 60Hz
• Supports Auto Lip Sync, Deep Color (12bpc), xvYCC and HBR (High Bit Rate Audio) with HDMI Port (Compliant HDMI monitor is required)
• Supports HDCP with HDMI and DisplayPort 1.2 Ports
• Supports 4K Ultra HD (UHD) playback with HDMI and DisplayPort 1.2 Ports

Audio

- Realtek ALC233 Audio Codec
- 1 x Headphone/Headset Jack
- 1 x MIC-In
- 1 x Audio Header

LAN

- Gigabit LAN 10/100/1000 Mb/s
- Giga PHY Intel® I219V
- Supports Wake-On-LAN
- Supports Lightning/ESD Protection
- Supports Energy Efficient Ethernet 802.3az
- Supports PXE

Front Panel I/O

- 1 x Headphone/Headset Jack
- 1 x USB 3.1 Gen1 Type-A Port (Supports ESD Protection)
- 1 x USB 3.1 Gen1 Type-C Port (Supports ESD Protection)
- 1 x Microphone Input Jack
Rear Panel

I/O

• 1 x DC Jack (Compatible with the 19V power adapter)*
* Please use 120W power adapter for 65W CPU and 90W power adapter for 35W CPU.
• 1 x D-Sub Port
• 1 x HDMI Port
• 1 x DisplayPort 1.2
• 1 x USB 2.0 Port (Supports ESD Protection)
• 1 x USB 3.1 Gen1 Port (Supports ESD Protection)
• 1 x RJ-45 LAN Port with LED (ACT/LINK LED and SPEED LED)

Storage

• 2 x SATA3 6.0 Gb/s with Power Connectors, support NCQ, AHCI and Hot Plug
• 1 x Ultra M.2 Socket, support type 2280 M.2 SATA3 6.0 Gb/s module and M.2 PCI Express module up to Gen3 x4 (32 Gb/s)*
* Supports NVMe SSD as boot disks

Connector

• 1 x COM Port Header (for H310M-STX/COM only)
• 1 x Chassis Intrusion Header
• 2 x CPU Fan Connectors (2 x 4-pin)
• 1 x MONO Speaker Header
• 1 x Front Panel Header
• 1 x USB 2.0 Header (Supports 2 USB 2.0 ports) (Supports ESD Protection)
• 1 x SD Card Socket
• 1 x Audio Header

BIOS

Feature

• AMI UEFI Legal BIOS with multilingual GUI support
• ACPI 6.0 Compliant wake up events
• SMBIOS 2.7 Support
• DRAM Voltage Multi-adjustment

Hardware

Monitor

• CPU temperature sensing
• CPU Fan Tachometer
• CPU Quiet Fan (Auto adjust chassis fan speed by CPU temperature)
• CPU Fan multi-speed control
• CASE OPEN detection
• Voltage monitoring: +12V, +5V, +3.3V, CPU Vcore
OS

- Microsoft® Windows® 10 64-bit

Certifications

- FCC, CE
- ErP/EuP ready (ErP/EuP ready power supply is required)

Please realize that there is a certain risk involved with overclocking, including adjusting the setting in the BIOS, applying Untied Overclocking Technology, or using third-party overclocking tools. Overclocking may affect your system’s stability, or even cause damage to the components and devices of your system. It should be done at your own risk and expense. We are not responsible for possible damage caused by overclocking.

Mini-STX Chassis Support List

<table>
<thead>
<tr>
<th>Vendor</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>SilverStone Technology Inc.</td>
<td>VT01S</td>
</tr>
<tr>
<td>AKasa</td>
<td>A-STX04-A1B / A-STX04-M1B</td>
</tr>
</tbody>
</table>
1.3 Motherboard Layout
Back Side View

- CMOS Battery
- SATA3
- SATA3

10 11 12 13
<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CPU Fan Connector (CPU_FAN2)</td>
</tr>
<tr>
<td>2</td>
<td>2 x 260-pin DDR4 SO-DIMM Slots (DDR4_A1, DDR4_B1)</td>
</tr>
<tr>
<td>3</td>
<td>CPU Fan Connector (CPU_FAN1)</td>
</tr>
<tr>
<td>4</td>
<td>MONO Speaker Header (SPEAKER1)</td>
</tr>
<tr>
<td>5</td>
<td>USB 2.0 Header (USB_5_6)</td>
</tr>
<tr>
<td>6</td>
<td>COM Port Header (COM1) (for H310M-STX/COM only)</td>
</tr>
<tr>
<td>7</td>
<td>System Panel Header (PANEL1)</td>
</tr>
<tr>
<td>8</td>
<td>Audio Header (AUDIO3)</td>
</tr>
<tr>
<td>9</td>
<td>Chassis Intrusion Header (CI1)</td>
</tr>
<tr>
<td>10</td>
<td>SATA3 Connector (SATA1)</td>
</tr>
<tr>
<td>11</td>
<td>SATA3 Connector (SATA2)</td>
</tr>
<tr>
<td>12</td>
<td>Clear CMOS Pad</td>
</tr>
<tr>
<td>13</td>
<td>SD Card Slot</td>
</tr>
</tbody>
</table>
1.4 Front Panel

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Headphone/Headset Jack (AUDIO1)</td>
</tr>
<tr>
<td>2</td>
<td>USB 3.1 Gen1 Type-A Port (USB_1)</td>
</tr>
<tr>
<td>3</td>
<td>USB 3.1 Gen1 Type-C Port (USB3_2)</td>
</tr>
<tr>
<td>4</td>
<td>Microphone Input (AUDIO2)</td>
</tr>
</tbody>
</table>
1.5 Rear Panel

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DC Jack</td>
<td>4</td>
<td>D-Sub Port</td>
</tr>
<tr>
<td></td>
<td>(Supports 19V DC Power Adapters)*</td>
<td>5</td>
<td>USB 2.0 Port (USB_3)</td>
</tr>
<tr>
<td>2</td>
<td>Display Port</td>
<td>6</td>
<td>USB 3.1 Gen1 Port (USB_4)</td>
</tr>
<tr>
<td>3</td>
<td>HDMI Port</td>
<td>7</td>
<td>LAN RJ-45 Port**</td>
</tr>
</tbody>
</table>

*Specification for DC plug

** There are two LEDs on each LAN port. Please refer to the table below for the LAN port LED indications.

<table>
<thead>
<tr>
<th>Activity / Link LED</th>
<th>Speed LED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status</td>
<td>Description</td>
</tr>
<tr>
<td>Off</td>
<td>No Link</td>
</tr>
<tr>
<td>Blinking</td>
<td>Data Activity</td>
</tr>
<tr>
<td>On</td>
<td>Link</td>
</tr>
</tbody>
</table>

* Specification for DC plug

ACT/LINK LED
SPEED LED
LAN Port

2.5 mm
55 mm
Chapter 2 Installation

This is a Mini-STX form factor motherboard. Before you install the motherboard, study the configuration of your chassis to ensure that the motherboard fits into it.

Pre-installation Precautions

Take note of the following precautions before you install motherboard components or change any motherboard settings.

- Make sure to unplug the power cord before installing or removing the motherboard components. Failure to do so may cause physical injuries and damages to motherboard components.
- In order to avoid damage from static electricity to the motherboard’s components, NEVER place your motherboard directly on a carpet. Also remember to use a grounded wrist strap or touch a safety grounded object before you handle the components.
- Hold components by the edges and do not touch the ICs.
- Whenever you uninstall any components, place them on a grounded anti-static pad or in the bag that comes with the components.
- When placing screws to secure the motherboard to the chassis, please do not overtighten the screws! Doing so may damage the motherboard.
2.1 Installing the CPU

1. Before you insert the 1151-Pin CPU into the socket, please check if the PnP cap is on the socket, if the CPU surface is unclean, or if there are any bent pins in the socket. Do not force to insert the CPU into the socket if above situation is found. Otherwise, the CPU will be seriously damaged.

2. Unplug all power cables before installing the CPU.
Please save and replace the cover if the processor is removed. The cover must be placed if you wish to return the motherboard for after service.
2.2 Installing the CPU Fan and Heatsink

1. Apply thermal paste to the CPU socket.
2. Place the heatsink on the CPU and secure it with screws.
2.3 Installing Memory Modules (SO-DIMM)

This motherboard provides two 260-pin DDR4 (Double Data Rate 4) SO-DIMM slots.

🌟 It is not allowed to install a DDR, DDR2 or DDR3 memory module into a DDR4 slot; otherwise, this motherboard and SO-DIMM may be damaged.

⚠️ The SO-DIMM only fits in one correct orientation. It will cause permanent damage to the motherboard and the SO-DIMM if you force the SO-DIMM into the slot at incorrect orientation.
2.4 Onboard Headers and Connectors

Onboard headers and connectors are NOT jumpers. Do NOT place jumper caps over these headers and connectors. Placing jumper caps over the headers and connectors will cause permanent damage to the motherboard.

System Panel Header
(9-pin PANEL1)
(see p.6, No. 7)

Connect the power button, reset button and system status indicator on the chassis to this header according to the pin assignments below. Note the positive and negative pins before connecting the cables.

- **PWRBTN (Power Button):**
 Connect to the power button on the chassis front panel. You may configure the way to turn off your system using the power button.

- **RESET (Reset Button):**
 Connect to the reset button on the chassis front panel. Press the reset button to restart the computer if the computer freezes and fails to perform a normal restart.

- **PLED (System Power LED):**
 Connect to the power status indicator on the chassis front panel. The LED is on when the system is operating. The LED keeps blinking when the system is in S1/S3 sleep state. The LED is off when the system is in S4 sleep state or powered off (S5).

- **HDLED (Hard Drive Activity LED):**
 Connect to the hard drive activity LED on the chassis front panel. The LED is on when the hard drive is reading or writing data.

The front panel design may differ by chassis. A front panel module mainly consists of power button, reset button, power LED, hard drive activity LED, speaker and etc. When connecting your chassis front panel module to this header, make sure the wire assignments and the pin assignments are matched correctly.
MONO Speaker Header
(4-pin SPEAKER1)
(see p.6, No. 4)

Please connect the chassis speaker to this header.

Serial ATA3 Connectors
(see p.7, No. 10 and 11)

These two SATA3 connectors support SATA data cables for internal storage devices with up to 6.0 Gb/s data transfer rate. *The SATA3 connectors support 2.5-inch hard drive (+5V) and do not support 3.5-inch hard drive (+12V)

<table>
<thead>
<tr>
<th>PIN</th>
<th>Signal Name</th>
<th>PIN</th>
<th>Signal Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GND</td>
<td>11</td>
<td>N/A</td>
</tr>
<tr>
<td>2</td>
<td>LVDS_TX+</td>
<td>12</td>
<td>5V</td>
</tr>
<tr>
<td>3</td>
<td>LVDS_TX-</td>
<td>13</td>
<td>5V</td>
</tr>
<tr>
<td>4</td>
<td>GND</td>
<td>14</td>
<td>5V</td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
<td>15</td>
<td>5V</td>
</tr>
<tr>
<td>6</td>
<td>LVDS_RX-</td>
<td>16</td>
<td>5V</td>
</tr>
<tr>
<td>7</td>
<td>LVDS_RX+</td>
<td>17</td>
<td>N/A</td>
</tr>
<tr>
<td>8</td>
<td>GND</td>
<td>18</td>
<td>GND</td>
</tr>
<tr>
<td>9</td>
<td>GND</td>
<td>19</td>
<td>GND</td>
</tr>
<tr>
<td>10</td>
<td>GND</td>
<td>20</td>
<td>GND</td>
</tr>
</tbody>
</table>

USB 2.0 Header
(9-pin USB_5_6)
(see p.6, No. 5)

There is one header on this motherboard. This USB 2.0 header can support two ports.

CPU Fan Connectors
(4-pin CPU_FAN1)
(see p.6, No. 3)
(4-pin CPU_FAN2)
(see p.6, No. 1)

This motherboard provides two 4-Pin CPU fan (Quiet Fan) connectors. If you plan to connect a 3-Pin CPU fan, please connect it to Pin 1-3.
Serial Port Header
(for H310M-STX/COM only)
(9-pin COM1)
(see p.6, No. 6)

This COM1 header supports a serial port module.

Chassis Intrusion Header
(2-pin CI1)
(see p.6, No. 9)

This motherboard supports CASE OPEN detection feature that detects if the chassis cover has been removed. This feature requires a chassis with chassis intrusion detection design.

Clear CMOS Pad
(see p.7, No. 12)

Clear CMOS Pad allows you to clear the data in CMOS. To clear CMOS, disconnect the power supply and short the Clear CMOS Pad.

Audio Header
(5-pin AUDIO3)
(see p.6, No. 8)

This Audio header allows you to connect the audio cable for headphone.
2.5 M.2 WiFi/BT Module and Intel® CNVi (Integrated WiFi/BT) Installation Guide

The M.2, also known as the Next Generation Form Factor (NGFF), is a small size and versatile card edge connector that aims to replace mPCIe and mSATA. The M.2 Socket (Key E) supports type 2230 WiFi/BT module and Intel® CNVi (Integrated WiFi/BT).
* The M.2 socket does not support SATA M.2 SSDs.

Before you install Intel® Integrated Connectivity (CNVi) module, be sure to turn off the AC power.

Installing the WiFi/BT module or Intel® CNVi (Integrated WiFi/BT)

Step 1
Prepare a type 2230 WiFi/BT module or Intel® CNVi (Integrated WiFi/BT) and the screw.

Step 2
Find the nut location to be used.
Step 3

Gently insert the WiFi/BT module or Intel® CNVi (Integrated WiFi/BT) into the M.2 slot. Please be aware that the module only fits in one orientation.

Step 4

Tighten the screw with a screwdriver to secure the module into place. Please do not overtighten the screw as this might damage the module.
2.6 M.2_SSD (NGFF) Module Installation Guide

The M.2, also known as the Next Generation Form Factor (NGFF), is a small size and versatile card edge connector that aims to replace mPCIe and mSATA. The Ultra M.2 Socket supports type 2280 M.2 SATA3 6.0 Gb/s module and M.2 PCI Express module up to Gen3 x4 (32 Gb/s).

Installing the M.2_SSD (NGFF) Module

Step 1
Prepare a M.2_SSD (NGFF) module and the screw.

Step 2
Gently insert the M.2 (NGFF) SSD module into the M.2 slot. Please be aware that the M.2 (NGFF) SSD module only fits in one orientation.

Step 3
Tighten the screw with a screwdriver to secure the module into place. Please do not overtighten the screw as this might damage the module.
M.2_SSD (NGFF) Module Support List

<table>
<thead>
<tr>
<th>Vendor</th>
<th>Interface</th>
<th>P/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADATA</td>
<td>PCIe</td>
<td>ADATA ASX7000NPC-512GT-C (XPG SX7000) (NVMe)</td>
</tr>
<tr>
<td>ADATA</td>
<td>PCIe</td>
<td>ADATA ASX8000NPC-512GM-C (XPG ASX8000) (NVMe)</td>
</tr>
<tr>
<td>Apacer</td>
<td>PCIe</td>
<td>Apacer Z280 AP240GZ280-240G (NVMe)</td>
</tr>
<tr>
<td>Intel</td>
<td>PCIe</td>
<td>Intel Optane Memory 32GB (MEMPEK1W032GA)(NVMe)</td>
</tr>
<tr>
<td>Intel</td>
<td>PCIe</td>
<td>Intel Optane Memory 16GB (MEMPEK1W016GA)(NVMe)</td>
</tr>
<tr>
<td>INTEL</td>
<td>PCIe</td>
<td>INTEL 600P-SSDPEKKW256G7-256GB (NVMe)</td>
</tr>
<tr>
<td>INTEL</td>
<td>PCIe</td>
<td>INTEL 600P-SSDPEKKW128G7-128GB (NVMe)</td>
</tr>
<tr>
<td>INTEL</td>
<td>PCIe</td>
<td>INTEL 6000P-SSDPEKKF256G7-256GB (NVMe)</td>
</tr>
<tr>
<td>INTEL</td>
<td>PCIe</td>
<td>INTEL 6000P-SSDPEKKF512G7-512GB (NVMe)</td>
</tr>
<tr>
<td>Kingston</td>
<td>PCIe</td>
<td>Kingston SHPM2280P2/240G</td>
</tr>
<tr>
<td>PATRIOT</td>
<td>PCIe</td>
<td>PATRIOT Hellfire M2 (240G) (NVMe)</td>
</tr>
<tr>
<td>PLEXTOR</td>
<td>PCIe</td>
<td>PLEXTOR PX-256M8PeG (NVMe)</td>
</tr>
<tr>
<td>PLEXTOR</td>
<td>PCIe</td>
<td>PLEXTOR PX-256M8SeGN (NVMe)</td>
</tr>
<tr>
<td>Samsung</td>
<td>PCIe</td>
<td>Samsung XP941-512G (MZHPU512HCGL)</td>
</tr>
<tr>
<td>Samsung</td>
<td>PCIe</td>
<td>Samsung 950Pro-512G (NVMe)</td>
</tr>
<tr>
<td>Samsung</td>
<td>PCIe</td>
<td>Samsung 950Pro-256G (NVMe)</td>
</tr>
<tr>
<td>Samsung</td>
<td>PCIe</td>
<td>Samsung MZ-VPW1280 (SM961) (NVMe)</td>
</tr>
<tr>
<td>TOSHIBA</td>
<td>PCIe</td>
<td>TOSHIBA XG3-128G (NVMe)</td>
</tr>
<tr>
<td>TOSHIBA</td>
<td>PCIe</td>
<td>TOSHIBA OCZ RD400-256G (NVMe)</td>
</tr>
<tr>
<td>WD</td>
<td>PCIe</td>
<td>WD WDS512GI0X0-00ENX0 (NVMe)</td>
</tr>
<tr>
<td>WD</td>
<td>PCIe</td>
<td>WD WDS256GI0X0-00ENX0 (NVMe)</td>
</tr>
<tr>
<td>ADATA</td>
<td>SATA</td>
<td>ADATA - SU800-SU800NS38-256GT-C-256G</td>
</tr>
<tr>
<td>ADATA</td>
<td>SATA</td>
<td>ADATA - SU800-SU800NS38-512GT-C-512G</td>
</tr>
<tr>
<td>Crucial</td>
<td>SATA</td>
<td>Crucial-CT240M500SSD4-240GB</td>
</tr>
<tr>
<td>Ezlink</td>
<td>SATA</td>
<td>Ezlink P51B-80-120GB</td>
</tr>
<tr>
<td>INTEL</td>
<td>SATA</td>
<td>INTEL-535-SSDSCKJF240A5-QS63-MLC-240G</td>
</tr>
<tr>
<td>INTEL</td>
<td>SATA</td>
<td>INTEL 540S-SSDSCKKW240H6-240GB</td>
</tr>
<tr>
<td>Kingston</td>
<td>SATA</td>
<td>Kingston-RBU-SNS8400S3/180GD</td>
</tr>
<tr>
<td>LITON</td>
<td>SATA</td>
<td>LITON Ljh-256V2G-11-256GB</td>
</tr>
<tr>
<td>PLEXTOR</td>
<td>SATA</td>
<td>PLEXTOR - M7V-PX-128M7VG-128GB</td>
</tr>
<tr>
<td>PLEXTOR</td>
<td>SATA</td>
<td>PLEXTOR PX-128M6G-128GB</td>
</tr>
<tr>
<td>Sandisk</td>
<td>SATA</td>
<td>Sandisk X400-SD8SN8U-128G</td>
</tr>
<tr>
<td>Sandisk</td>
<td>SATA</td>
<td>Sandisk Z400s-SD8SNAT-128G</td>
</tr>
<tr>
<td>Transcend</td>
<td>SATA</td>
<td>Transcend TS256GMTS800-256GB</td>
</tr>
<tr>
<td>V-Color</td>
<td>SATA</td>
<td>V-Color 120G</td>
</tr>
<tr>
<td>V-Color</td>
<td>SATA</td>
<td>V-Color 240G</td>
</tr>
<tr>
<td>WD</td>
<td>SATA</td>
<td>WD BLUE WDS100T1B0B</td>
</tr>
<tr>
<td>WD</td>
<td>SATA</td>
<td>WD Green WDS240GiG0B-00RC30</td>
</tr>
</tbody>
</table>

For the latest updates of M.2_SSD (NGFF) module support list, please visit our website for details.
2.7 SD Card Installation Guide

1. Locate the SD Card Slot on the back side of the motherboard.

2. Carefully insert the SD Card into the slot until it clicks.
Chapter 3 Software and Utilities Operation

3.1 Installing Drivers

The Support CD that comes with the motherboard contains necessary drivers and useful utilities that enhance the motherboard’s features.

Running The Support CD

To begin using the support CD, insert the CD into your CD-ROM drive. The CD automatically displays the Main Menu if “AUTORUN” is enabled in your computer. If the Main Menu does not appear automatically, locate and double click on the file “ASRSETUP.EXE” in the Support CD to display the menu.

Drivers Menu

The drivers compatible to your system will be auto-detected and listed on the support CD driver page. Please click Install All or follow the order from top to bottom to install those required drivers. Therefore, the drivers you install can work properly.

Utilities Menu

The Utilities Menu shows the application software that the motherboard supports. Click on a specific item then follow the installation wizard to install it.
Chapter 4 UEFI SETUP UTILITY

4.1 Introduction

This section explains how to use the UEFI SETUP UTILITY to configure your system. You may run the UEFI SETUP UTILITY by pressing <F2> or right after you power on the computer, otherwise, the Power-On-Self-Test (POST) will continue with its test routines. If you wish to enter the UEFI SETUP UTILITY after POST, restart the system by pressing <Ctl> + <Alt> + <Delete>, or by pressing the reset button on the system chassis. You may also restart by turning the system off and then back on.

Because the UEFI software is constantly being updated, the following UEFI setup screens and descriptions are for reference purpose only, and they may not exactly match what you see on your screen.
4.2 EZ Mode

The EZ Mode screen appears when you enter the BIOS setup program by default. EZ mode is a dashboard which contains multiple readings of the system's current status. You can check the most crucial information of your system, such as CPU speed, DRAM frequency, SATA information, fan speed, etc.

Press <F6> or click the "Advanced Mode" button at the upper right corner of the screen to switch to "Advanced Mode" for more options.

<table>
<thead>
<tr>
<th>No.</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Help</td>
</tr>
<tr>
<td>2</td>
<td>Load UEFI Defaults</td>
</tr>
<tr>
<td>3</td>
<td>Save Changes and Exit</td>
</tr>
<tr>
<td>4</td>
<td>Discard Changes</td>
</tr>
<tr>
<td>5</td>
<td>Change Language</td>
</tr>
<tr>
<td>6</td>
<td>Switch to Advanced Mode</td>
</tr>
</tbody>
</table>
4.3 Advanced Mode

The Advanced Mode provides more options to configure the BIOS settings. Refer to the following sections for the detailed configurations.

To access the EZ Mode, press <F6> or click the "EZ Mode" button at the upper right corner of the screen.

4.3.1 UEFI Menu Bar

The top of the screen has a menu bar with the following selections:

- **Main**: For setting system time/date information
- **OC Tweaker**: For overclocking configurations
- **Advanced**: For advanced system configurations
- **Tool**: Useful tools
- **H/W Monitor**: Displays current hardware status
- **Security**: For security settings
- **Boot**: For configuring boot settings and boot priority
- **Exit**: Exit the current screen or the UEFI Setup Utility
4.3.2 Navigation Keys

Use <←→> key or <←→> key to choose among the selections on the menu bar, and use <↑↓> key or <←→> key to move the cursor up or down to select items, then press <Enter> to get into the sub screen. You can also use the mouse to click your required item.

Please check the following table for the descriptions of each navigation key.

<table>
<thead>
<tr>
<th>Navigation Key(s)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ / -</td>
<td>To change option for the selected items</td>
</tr>
<tr>
<td><Tab></td>
<td>Switch to next function</td>
</tr>
<tr>
<td><PGUP></td>
<td>Go to the previous page</td>
</tr>
<tr>
<td><PGDN></td>
<td>Go to the next page</td>
</tr>
<tr>
<td><HOME></td>
<td>Go to the top of the screen</td>
</tr>
<tr>
<td><END></td>
<td>Go to the bottom of the screen</td>
</tr>
<tr>
<td><F1></td>
<td>To display the General Help Screen</td>
</tr>
<tr>
<td><F5></td>
<td>Add / Remove Favorite</td>
</tr>
<tr>
<td><F7></td>
<td>Discard changes and exit the SETUP UTILITY</td>
</tr>
<tr>
<td><F9></td>
<td>Load optimal default values for all the settings</td>
</tr>
<tr>
<td><F10></td>
<td>Save changes and exit the SETUP UTILITY</td>
</tr>
<tr>
<td><F12></td>
<td>Print screen</td>
</tr>
<tr>
<td><ESC></td>
<td>Jump to the Exit Screen or exit the current screen</td>
</tr>
</tbody>
</table>
4.4 Main Screen

When you enter the UEFI SETUP UTILITY, the Main screen will appear and display the system overview.

H310M-STX:

![Main Screen H310M-STX](image)

H310M-STX/COM:

![Main Screen H310M-STX/COM](image)

My Favorite

Display your collection of BIOS items. Press F5 to add/remove your favorite items.
4.5 OC Tweaker Screen

In the OC Tweaker screen, you can set up overclocking features.

Because the UEFI software is constantly being updated, the following UEFI setup screens and descriptions are for reference purpose only, and they may not exactly match what you see on your screen.

CPU Configuration

Boot Performance Mode
Default is Max Non-Turbo performance mode. It will keep cpu Flex-ratio till OS handoff. Max Battery mode will set CPU ratio as x8 till OS handoff. This option is suggested for BCLK overclocking.

FCLK Frequency
Configure the FCLK Frequency.

Intel SpeedStep Technology
Intel SpeedStep technology allows processors to switch between multiple frequencies and voltage points for better power saving and heat dissipation.
Intel Turbo Boost Technology
Intel Turbo Boost Technology enables the processor to run above its base operating frequency when the operating system requests the highest performance state.

Intel Speed Shift Technology
Enable/Disable Intel Speed Shift Technology support. Enabling will expose the CPPC v2 interface to allow for hardware controlled P-sates.

Long Duration Power Limit
Configure Package Power Limit 1 in watts. When the limit is exceeded, the CPU ratio will be lowered after a period of time. A lower limit can protect the CPU and save power, while a higher limit may improve performance.

Long Duration Maintained
Configure the period of time until the CPU ratio is lowered when the Long Duration Power Limit is exceeded.

Short Duration Power Limit
Configure Package Power Limit 2 in watts. When the limit is exceeded, the CPU ratio will be lowered immediately. A lower limit can protect the CPU and save power, while a higher limit may improve performance.

CPU Core Current Limit
Configure the current limit of the CPU core. A lower limit can protect the CPU and save power, while a higher limit may improve performance.

GT Current Limit
Configure the current limit of the GT slice. A lower limit can protect the CPU and save power, while a higher limit may improve performance.

DRAM Configuration

DRAM Tweaker
Fine tune the DRAM settings by leaving marks in checkboxes. Click OK to confirm and apply your new settings.

DRAM Timing Configuration

DRAM Frequency
If [Auto] is selected, the motherboard will detect the memory module(s) inserted and assign the appropriate frequency automatically.
Primary Timing

CAS# Latency (tCL)
The time between sending a column address to the memory and the beginning of the data in response.

RAS# to CAS# Delay and Row Precharge (tRCDtRP)
RAS# to CAS# Delay: The number of clock cycles required between the opening of a row of memory and accessing columns within it.
Row Precharge: The number of clock cycles required between the issuing of the precharge command and opening the next row.

RAS# Active Time (tRAS)
The number of clock cycles required between a bank active command and issuing the precharge command.

Command Rate (CR)
The delay between when a memory chip is selected and when the first active command can be issued.

Secondary Timing

Write Recovery Time (tWR)
The amount of delay that must elapse after the completion of a valid write operation, before an active bank can be precharged.

Refresh Cycle Time (tRFC)
The number of clocks from a Refresh command until the first Activate command to the same rank.

RAS to RAS Delay (tRRD_L)
The number of clocks between two rows activated in different banks of the same rank.

RAS to RAS Delay (tRRD_S)
The number of clocks between two rows activated in different banks of the same rank.

Write to Read Delay (tWTR_L)
The number of clocks between the last valid write operation and the next read command to the same internal bank.
Write to Read Delay (tWTR_S)
The number of clocks between the last valid write operation and the next read command to
the same internal bank.

Read to Precharge (tRTP)
The number of clocks that are inserted between a read command to a row pre-
charge command to the same rank.

Four Activate Window (tFAW)
The time window in which four activates are allowed the same rank.

CAS Write Latency (tCWL)
Configure CAS Write Latency.

Third Timing

tREFI
Configure refresh cycles at an average periodic interval.

tCKE
Configure the period of time the DDR4 initiates a minimum of one refresh
command internally once it enters Self-Refresh mode.

Turn Around Timing

tRDRD_sg
Configure between module read to read delay.

tRDRD_dg
Configure between module read to read delay.

tRDRD_dr
Configure between module read to read delay.

tRDRD_dd
Configure between module read to read delay.

tRDWR_sg
Configure between module read to write delay.
tRDWR_dg
Configure between module read to write delay.

tRDWR_dr
Configure between module read to write delay.

tRDWR_dd
Configure between module read to write delay.

tWRRD_sg
Configure between module write to read delay.

tWRRD_dg
Configure between module write to read delay.

tWRRD_dr
Configure between module write to read delay.

tWRRD_dd
Configure between module write to read delay.

tWRWR_sg
Configure between module write to write delay.

tWRWR_dg
Configure between module write to write delay.

tWRWR_dr
Configure between module write to write delay.

tWRWR_dd
Configure between module write to write delay.

Round Trip Timing

RTL Init Value
Configure round trip latency init value for round trip latency training.

IO-L Init Value
Configure IO latency init value for IO latency training.
RTL (CH A)
Configure round trip latency for channel A.

RTL (CH B)
Configure round trip latency for channel B.

IO-L (CH A)
Configure IO latency for channel A.

IO-L (CH B)
Configure IO latency for channel B.

IO-L Offset (CH A)
Configure IO latency offset for channel A.

IO-L Offset (CH B)
Configure IO latency offset for channel B.

RFR Delay (CH A)
Configure RFR Delay for Channel A.

RFR Delay (CH B)
Configure RFR Delay for Channel B.

ODT Setting

ODT WR (A1)
Configure the memory on die termination resistors' WR for channel A.

ODT WR (B1)
Configure the memory on die termination resistors' WR for channel B.

ODT NOM (A1)
Use this to change ODT (CH A) Auto/Manual settings. The default is [Auto].

ODT NOM (B1)
Use this to change ODT (CH B) Auto/Manual settings. The default is [Auto].

ODT PARK (A1)
Configure the memory on die termination resistors' PARK for channel A.
ODT PARK (B1)
Configure the memory on die termination resistors’ PARK for channel B.

COMP Setting
RCOMP0: DQ ODT (Read)
Default is 121.

RCOMP1: DQ /CLK Ron (Drive Strength)
Default is 75.

RCOMP2: CMD/CTL Ron (Drive Strength)
Default is 100.

DQ ODT Driving
Adjust ODT Driving for better signal. Default is 60.

DQ Driving
Adjust DQ Driving for better signal. Default is 26.

Command Driving
Adjust Command Driving for better signal. Default is 20.

Control Driving
Adjust Control Driving for better signal. Default is 20.

Clock Driving
Adjust Clock Driving for better signal. Default is 26.

DQ Slew Rate
Adjust DQ Slew Rate for better signal. Default is 59.

Command Slew Rate
Adjust Command Slew Rate for better signal. Default is 53 for IN, 89 for 2N.

Control Slew Rate
Adjust Control Slew Rate for better signal. Default is 53.

Clock Slew Rate
Adjust Clock Slew Rate for better signal. Default is 53.
MRS Setting

MRS tCL
Configure the tCL for Memory MRS MR0.

MRS tWRtRTP
Configure the tWRtRTP for Memory MRS MRC.

MRS tCWL
Configure the tCWL for Memory MRS MR2.

MRS tCCD_L
Configure the tCL for Memory MRS MR6.

Advanced Setting

Timing Optimization
Configure the fast path through the MRC.

Realtime Memory Timing
Configure the realtime memory timings.

[Enabled] The system will allow performing realtime memory timing changes after MRC_DONE.

Command Tristate
Configure the Command Tristate Support.

Exit On Failure
Configure the Exit On Failure for MRC training steps.

Reset On Training Fail
Reset system if the MRC training fails.

MRC Fast Boot
Enable Memory Fast Boot to skip DRAM memory training for booting faster.

Voltage Configuration

DRAM Voltage
Use this to configure DRAM Voltage. The default value is [Auto].
Save User Default
Type a profile name and press enter to save your settings as user default.

Load User Default
Load previously saved user defaults.

Save User UEFI Setup Profile to Disk
Save current UEFI settings as an user default profile to disk.

Load User UEFI Setup Profile to Disk
Load previously saved user defaults from the disk.
4.6 Advanced Screen

In this section, you may set the configurations for the following items: CPU Configuration, Chipset Configuration, Storage Configuration, Super IO Configuration, ACPI Configuration, USB Configuration and Trusted Computing.

Setting wrong values in this section may cause the system to malfunction.

UEFI Configuration

UEFI Setup Style
Select the default mode when entering the UEFI setup utility.

Active Page on Entry
Select the default page when entering the UEFI setup utility.

Full HD UEFI
When [Auto] is selected, the resolution will be set to 1920 x 1080 if the monitor supports Full HD resolution. If the monitor does not support Full HD resolution, then the resolution will be set to 1024 x 768. When [Disable] is selected, the resolution will be set to 1024 x 768 directly.
4.6.1 CPU Configuration

Intel Hyper Threading Technology

Intel Hyper Threading Technology allows multiple threads to run on each core, so that the overall performance on threaded software is improved.

Active Processor Cores

Select the number of cores to enable in each processor package.

CPU C States Support

Enable CPU C States Support for power saving. It is recommended to keep C3, C6 and C7 all enabled for better power saving.

Enhanced Halt State (C1E)

Enable Enhanced Halt State (C1E) for lower power consumption.

CPU C6 State Support

Enable C6 sleep state for lower power consumption.

CPU C7 State Support

Enable C7 sleep state for lower power consumption.

CPU C10 State Support

Enable C10 sleep state for lower power consumption.
Package C State Support
Enable CPU, PCIe, Memory, Graphics C State Support for power saving.

CFG Lock
This item allows you to disable or enable the CFG Lock.

CPU Thermal Throttling
Enable CPU internal thermal control mechanisms to keep the CPU from overheating.

Intel Virtualization Technology
Intel Virtualization Technology allows a platform to run multiple operating systems and applications in independent partitions, so that one computer system can function as multiple virtual systems.

Hardware Prefetcher
Automatically prefetch data and code for the processor. Enable for better performance.

Adjacent Cache Line Prefetch
Automatically prefetch the subsequent cache line while retrieving the currently requested cache line. Enable for better performance.

Software Guard Extensions (SGX)
Use this item to enable or disable Software Controlled Software Guard Extensions (SGX).
4.6.2 Chipset Configuration

Above 4G Decoding
Enable or disable 64bit capable Devices to be decoded in Above 4G Address Space (only if the system supports 64 bit PCI decoding).

VT-d
Intel® Virtualization Technology for Directed I/O helps your virtual machine monitor better utilize hardware by improving application compatibility and reliability, and providing additional levels of manageability, security, isolation, and I/O performance.

PCI Express Native Control
Select Enable for enhanced PCI Express power saving in OS.

PCIE ASPM Support
This option enables/disables the ASPM support for all CPU downstream devices.

PCH PCIE ASPM Support
This option enables/disables the ASPM support for all PCH PCIE devices.

DMI ASPM Support
This option enables/disables the control of ASPM on CPU side of the DMI Link.
PCH DMI ASPM Support
This option enables/disables the ASPM support for all PCH DMI devices.

Share Memory
Configure the size of memory that is allocated to the integrated graphics processor when the system boots up.

Onboard HD Audio
Enable/disable onboard HD audio. Set to Auto to enable onboard HD audio and automatically disable it when a sound card is installed.

Onboard HDMI HD Audio
Enable audio for the onboard digital outputs.

WAN Radio
Enable/disable the WiFi module's connectivity.

BT Control
Enable/disable the Bluetooth's connectivity.

Deep Sleep
Configure deep sleep mode for power saving when the computer is shut down.

Restore on AC/Power Loss
Select the power state after a power failure. If [Power Off] is selected, the power will remain off when the power recovers. If [Power On] is selected, the system will start to boot up when the power recovers.
4.6.3 Storage Configuration

SATA Controller(s)
Enable/disable the SATA controllers.

SATA Aggressive Link Power Management
SATA Aggressive Link Power Management allows SATA devices to enter a low power state during periods of inactivity to save power. It is only supported by AHCI mode.

Hard Disk S.M.A.R.T.
S.M.A.R.T stands for Self-Monitoring, Analysis, and Reporting Technology. It is a monitoring system for computer hard disk drives to detect and report on various indicators of reliability.
4.6.4 Super IO Configuration

Serial Port (for H310M-STX/COM only)
Enable or disable the Serial port.

Serial Port Address (for H310M-STX/COM only)
Select the address of the Serial port.
4.6.5 ACPI Configuration

Suspend to RAM
Select disable for ACPI suspend type S1. It is recommended to select auto for ACPI S3 power saving.

I219 LAN Power On
Allow the system to be waked up by I219 LAN.

Ring-In Power On
Allow the system to be waked up by onboard COM port modem Ring-In signals.

RTC Alarm Power On
Allow the system to be waked up by the real time clock alarm. Set it to By OS to let it be handled by your operating system.

USB Keyboard/Remote Power On
Allow the system to be waked up by an USB keyboard or remote controller.

USB Mouse Power On
Allow the system to be waked up by an USB mouse.
4.6.6 USB Configuration

Legacy USB Support
Enable or disable Legacy OS Support for USB 2.0 devices. If you encounter USB compatibility issues it is recommended to disable legacy USB support. Select UEFI Setup Only to support USB devices under the UEFI setup and Windows/Linux operating systems only.

XHCI Hand-off
This is a workaround for OSes without XHCI hand-off support. The XHCI ownership change should be claimed by XHCI driver.
4.6.7 Trusted Computing

Security Device Support
Enable or disable BIOS support for security device.
4.7 Tools

UEFI Tech Service
Contact Tech Service if you are having trouble with your PC. Please setup network configuration before using UEFI Tech Service.

Instant Flash
Save UEFI files in your USB storage device and run Instant Flash to update your UEFI.

Internet Flash - DHCP (Auto IP), Auto
Internet Flash downloads and updates the latest UEFI firmware version from our servers for you. Please setup network configuration before using Internet Flash.
*For BIOS backup and recovery purpose, it is recommended to plug in your USB pen drive before using this function.
Network Configuration

Use this to configure internet connection settings for Internet Flash.

Internet Setting
Enable or disable sound effects in the setup utility.

UEFI Download Server
Select a server to download the UEFI firmware.
4.8 Hardware Health Event Monitoring Screen

This section allows you to monitor the status of the hardware on your system, including the parameters of the CPU temperature, motherboard temperature, fan speed and voltage.

Fan-Tastic Tuning
Select a fan mode for CPU Fan, or choose Customize to set 5 CPU temperatures and assign a respective fan speed for each temperature.

CPU Fan 1 Setting
Select a fan mode for CPU Fan 1, or choose Customize to set 5 CPU temperatures and assign a respective fan speed for each temperature.

CPU Fan 2 Setting
Select a fan mode for CPU Fan 2, or choose Customize to set 5 CPU temperatures and assign a respective fan speed for each temperature.

Case Open Feature
Enable or disable Case Open Feature to detect whether the chassis cover has been removed.
4.9 Security Screen

In this section you may set or change the supervisor/user password for the system. You may also clear the user password.

Supervisor Password
Set or change the password for the administrator account. Only the administrator has authority to change the settings in the UEFI Setup Utility. Leave it blank and press enter to remove the password.

User Password
Set or change the password for the user account. Users are unable to change the settings in the UEFI Setup Utility. Leave it blank and press enter to remove the password.

Secure Boot
Use this item to enable or disable support for Secure Boot.

Intel(R) Platform Trust Technology
Enable/disable Intel PTT in ME. Disable this option to use discrete TPM Module.
4.10 Boot Screen

This section displays the available devices on your system for you to configure the boot settings and the boot priority.

Fast Boot

Fast Boot minimizes your computer's boot time. In fast mode you may not boot from an USB storage device. The VBIOS must support UEFI GOP if you are using an external graphics card. Please notice that Ultra Fast mode will boot so fast that the only way to enter this UEFI Setup Utility is to Clear CMOS or run the Restart to UEFI utility in Windows.

Boot From Onboard LAN

Allow the system to be waked up by the onboard LAN.

Setup Prompt Timeout

Configure the number of seconds to wait for the setup hot key.

Bootup Num-Lock

Select whether Num Lock should be turned on or off when the system boots up.

Boot Beep

Select whether the Boot Beep should be turned on or off when the system boots up. Please note that a buzzer is needed.
Full Screen Logo
Enable to display the boot logo or disable to show normal POST messages.

AddOn ROM Display
Enable AddOn ROM Display to see the AddOn ROM messages or configure the AddOn ROM if you've enabled Full Screen Logo. Disable for faster boot speed.

Boot Failure Guard Message
If the computer fails to boot for a number of times the system automatically restores the default settings.

CSM (Compatibility Support Module)

![CSM Configuration Screen]

CSM
Enable to launch the Compatibility Support Module. Please do not disable unless you’re running a WHCK test.

Launch PXE OpROM Policy
Select UEFI only to run those that support UEFI option ROM only. Select Legacy only to run those that support legacy option ROM only. Select Do not launch to not execute both legacy and UEFI option ROM.
Launch Storage OpROM Policy
Select UEFI only to run those that support UEFI option ROM only. Select Legacy only to run those that support legacy option ROM only. Select Do not launch to not execute both legacy and UEFI option ROM.

Other PCI Device ROM Priority
For PCI devices other than Network. Mass storage or Video defines which OpROM to launch.
4.11 Exit Screen

Save Changes and Exit
When you select this option the following message, “Save configuration changes and exit setup?” will pop out. Select [OK] to save changes and exit the UEFI SETUP UTILITY.

Discard Changes and Exit
When you select this option the following message, “Discard changes and exit setup?” will pop out. Select [OK] to exit the UEFI SETUP UTILITY without saving any changes.

Discard Changes
When you select this option the following message, “Discard changes?” will pop out. Select [OK] to discard all changes.

Load UEFI Defaults
Load UEFI default values for all options. The F9 key can be used for this operation.

Launch EFI Shell from filesystem device
Copy shellx64.efi to the root directory to launch EFI Shell.
DECLARATION OF CONFORMITY
Per FCC Part 2 Section 2.1077(a)

Product Name: Motherboard

Model Number: H310M-STX / H310M-STX/COM

Conforms to the following specifications:

☑️ FCC Part 15, Subpart B, Unintentional Radiators

Supplementary Information:

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.
EU Declaration of Conformity

For the following equipment:

Motherboard

(Product Name)

H310M-STX / H310M-STX/COM

(Model Designation / Trade Name)

- **EMC — Directive 2014/30/EU (from April 20th, 2016)**
 - EN 55022:2010/AC:2011 Class B
 - EN 55032:2012+AC:2013 Class B
 - EN 61000-3-2:2014
 - EN 61000-3-3:2013

- **LVD — Directive 2014/35/EU (from April 20th, 2016)**
 - EN 60950-1 : 2011+ A2: 2013
 - EN 60950-1 : 2006/A12: 2011

- **RoHS — Directive 2011/65/EU**
- **CE marking**

(EU conformity marking)

P/N: 15G067024000AK V1.0